245
Views
0
CrossRef citations to date
0
Altmetric
Research article

Transgenerational epigenetic self-memory of Dio3 dosage is associated with Meg3 methylation and altered growth trajectories and neonatal hormones

, , , , , & ORCID Icon show all
Article: 2376948 | Received 30 Jan 2024, Accepted 02 Jul 2024, Published online: 11 Jul 2024

References

  • Soubry A. Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog Biophys Mol Biol. 2015;118(1–2):79–20. doi: 10.1016/j.pbiomolbio.2015.02.008
  • Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology. 2011;152(6):2228–2236. doi: 10.1210/en.2010-1461
  • Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology. 2009;150(11):4999–5009. doi: 10.1210/en.2009-0500
  • Zambrano E, Martinez-Samayoa PM, Bautista CJ, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol. 2005;566(1):225–236. doi: 10.1113/jphysiol.2005.086462
  • Walker DM, Gore AC. Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol. 2011;7(4):197–207. doi: 10.1038/nrendo.2010.215
  • Skinner MK. Endocrine disruptors in 2015: epigenetic transgenerational inheritance. Nat Rev Endocrinol. 2016;12(2):68–70. doi: 10.1038/nrendo.2015.206
  • Rodgers AB, Morgan CP, Bronson SL, et al. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33(21):9003–9012. doi: 10.1523/JNEUROSCI.0914-13.2013
  • Rodgers AB, Morgan CP, Leu NA, et al. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA. 2015;112(44):13699–13704. doi: 10.1073/pnas.1508347112
  • Morgan CP, Bale TL. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci. 2011;31(33):11748–11755. doi: 10.1523/JNEUROSCI.1887-11.2011
  • Jawaid A, Roszkowski M, Mansuy IM. Transgenerational epigenetics of traumatic stress. Prog Mol Biol Transl Sci. 2018;158:273–298.
  • Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2006;7(8):847–854. doi: 10.1038/nn1276
  • Krishnan K, Rahman S, Hasbum A, et al. Maternal care modulates transgenerational effects of endocrine-disrupting chemicals on offspring pup vocalizations and adult behaviors. Horm Behav. 2019;107:96–109. doi: 10.1016/j.yhbeh.2018.12.009
  • Dickson DA, Stohn P, Saavedra Rodriguez L, et al. Involvement of early embryonic miR-409-3p in the establishment of anxiety levels in female mice. Dev Neurobiol. 2020;80(5–6):160–167. doi: 10.1002/dneu.22756
  • Saavedra-Rodríguez L, Feig LA. Chronic social instability induces anxiety and defective social interactions across generations. Biol Psychiatry. 2013;73(1):44–53. doi: 10.1016/j.biopsych.2012.06.035
  • Escher J, Ford D, LaSalle J. General anesthesia, germ cells and the missing heritability of autism: an urgent need for research. Environ Epigenet. 2020;6(1):dvaa007. doi: 10.1093/eep/dvaa007
  • Chang HS, Anway MD, Rekow SS, et al. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination.[see comment]. Endocrinology. 2006;147(12):5524–5541. doi: 10.1210/en.2006-0987
  • Soubry A, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays: news and reviews in molecular, cellular and developmental biology. Bioessays. 2014;36(4):359–371. doi: 10.1002/bies.201300113
  • Skinner C, Haque M, Nilsson E, et al. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLOS ONE [Electron Resource]. 2013;8(7):e66318. doi: 10.1371/journal.pone.0066318
  • Girirajan S. Missing heritability and where to find it. Genome Biol. 2017;18(1):89. doi: 10.1186/s13059-017-1227-x
  • Trerotola M, Relli V, Simeone P, et al. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9(1):17. doi: 10.1186/s40246-015-0041-3
  • Koch L. Disease genetics: insights into missing heritability. Nat Rev Genet. 2014;15(4):218. doi: 10.1038/nrg3713
  • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–753. doi: 10.1038/nature08494
  • Ozgyin L, Erdos E, Bojcsuk D, et al. Nuclear receptors in transgenerational epigenetic inheritance. Prog Biophys Mol Biol. 2015;118(1–2):34–43. doi: 10.1016/j.pbiomolbio.2015.02.012
  • Weaver IC, Szyf M, Meaney MJ. From maternal care to gene expression: DNA methylation and the maternal programming of stress responses. Endocr Res. 2002;28(4):699. doi: 10.1081/ERC-120016989
  • Ruf M, Gunter HM, Schauer K, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatr Psychiatr. 2011;1(7):e21. doi: 10.1038/tp.2011.21
  • Yeshurun S, Rogers J, Short AK, et al. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring. Psychoneuroendocrinology. 2017;83:9–18. doi: 10.1016/j.psyneuen.2017.05.014
  • Moisiadis VG, Constantinof A, Kostaki A, et al. Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Sci Rep. 2017;7(1):11814. doi: 10.1038/s41598-017-11635-w
  • Short AK, Fennell KA, Perreau VM, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry. 2016;6(6):e837. doi: 10.1038/tp.2016.109
  • Crews D, Gore AC, Hsu TS, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA. 2007;104(14):5942–5946. doi: 10.1073/pnas.0610410104
  • Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility.[see comment]. Science (New York, NY). 2006;308(5727):1466–1469. doi: 10.1126/science.1108190
  • Hernandez A, Martinez ME, Chaves C, et al. Epigenetic developmental programming and intergenerational effects of thyroid hormones. Vitam Horm. 2023;122:23–49.
  • Anselmo J, Scherberg NH, Dumitrescu AM, et al. Reduced sensitivity to thyroid hormone as a transgenerational epigenetic Marker transmitted along the human male line. Thyroid. 2019;29(6):778–782. doi: 10.1089/thy.2019.0080
  • Martinez ME, Duarte CW, Stohn JP, et al. Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information. Mol Psychiatry. 2020;25(5):939–950. doi: 10.1038/s41380-018-0281-4
  • Bakke JL, Lawrence NL, Robinson S, et al. Endocrine studies in the untreated F1 and F2 progeny of rats treated neonatally with thyroxine. Biol Neonate. 1977;31(1–2):71–83. doi: 10.1159/000240946
  • Bakke JL, Lawrence NL, Robinson S, et al. Observations on the untreated progeny of hypothyroid male rats. Metab Clin & Exp. 1976;25(4):437–444. doi: 10.1016/0026-0495(76)90076-7
  • McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev. 2014;35(1):59–105. doi: 10.1210/er.2013-1055
  • Brent GA, Braverman LE, Zoeller RT. Thyroid health and the environment. Thyroid. 2007;17:807–809.
  • Wadzinski TL, Geromini K, McKinley Brewer J, et al. Endocrine disruption in human placenta: expression of the dioxin-inducible enzyme, CYP1A1, is correlated with that of thyroid hormone-regulated genes. J Clin Endocrinol Metab. 2014;99(12):E2735–43. doi: 10.1210/jc.2014-2629
  • Vuong AM, Webster GM, Romano ME, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME study, Cincinnati, USA. Environ Health Perspect. 2015;123(10):1079–1085. doi: 10.1289/ehp.1408996
  • Cullen SM, Hassan N, Smith-Raska M. Effects of noninherited ancestral genotypes on offspring phenotypes†. Biol Reprod. 2021;105(3):747–760. doi: 10.1093/biolre/ioab120
  • Tsai CE, Lin SP, Ito M, et al. Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr Biol. 2002;12(14):1221–1226. doi: 10.1016/S0960-9822(02)00951-X
  • Hernandez A, Fiering S, Martinez E, et al. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology. 2002;143(11):4483–4486. doi: 10.1210/en.2002-220800
  • Martinez ME, Cox DF, Youth BP, et al. Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14. Eur J Hum Genet. 2016;24(11):1617–1621. doi: 10.1038/ejhg.2016.66
  • Charalambous M, Hernandez A. Genomic imprinting of the type 3 thyroid hormone deiodinase gene: regulation and developmental implications. Biochim et Biophys Acta (BBA) - Gener Subj. 2013;1830(7):3946–3955. doi: 10.1016/j.bbagen.2012.03.015
  • Hernandez A, Martinez ME, Ng L, et al. Thyroid hormone deiodinases: dynamic switches in developmental transitions. Endocrinology. 2021;162(8):162. doi: 10.1210/endocr/bqab091
  • Hernandez A, Martinez ME, Fiering S, et al. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Investig. 2006;116(2):476–484. doi: 10.1172/JCI26240
  • Martinez ME, Pinz I, Preda M, et al. DIO3 protects against thyrotoxicosis-derived cranio-encephalic and cardiac congenital abnormalities. JCI Insight. 2022;7(21). doi: 10.1172/jci.insight.161214
  • Martinez ME, Stohn JP, Mutina EM, et al. Thyroid hormone elicits intergenerational epigenetic effects on adult social behavior and fetal brain expression of autism susceptibility genes. Front Neurosci. 2022;16:1055116. doi: 10.3389/fnins.2022.1055116
  • Martinez ME, Karaczyn A, Stohn JP, et al. The type 3 deiodinase is a critical determinant of appropriate thyroid hormone action in the developing testis. Endocrinology. 2016;157(3):1276–1288. doi: 10.1210/en.2015-1910
  • Martinez ME, Charalambous M, Saferali A, et al. Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol Endocrinol (Baltim, Md). 2014;28(11):1875–1886. doi: 10.1210/me.2014-1210
  • Zhu Y, Mordaunt CE, Yasui DH, et al. Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Hum Mol Genet. 2019;28(16):2659–2674. doi: 10.1093/hmg/ddz084
  • Galton VA, Hiebert A. Hepatic iodothyronine 5-deiodinase activity in Rana catesbeiana tadpoles at different stages of the life cycle. Endocrinology. 1987;121(1):42–47. doi: 10.1210/endo-121-1-42
  • Gil-Ibanez P, Belinchon MM, Morte B, et al. Is the intrinsic genomic activity of thyroxine relevant in vivo? Effects on gene expression in primary cerebrocortical and neuroblastoma cells. Thyroid. 2017;27(8):1092–1098. doi: 10.1089/thy.2017.0024
  • Bárez-López S, Obregon MJ, Martínez-de-Mena R, et al. Effect of triiodothyroacetic acid treatment in Mct8 deficiency: a word of caution. Thyroid. 2016;26(5):618–626. doi: 10.1089/thy.2015.0388
  • Escobar-Morreale HF, Obregon MJ, Hernandez A, et al. Regulation of iodothyronine deiodinase activity as studied in thyroidectomized rats infused with thyroxine or triiodothyronine 1. Endocrinology. 1997;138(6):2559–2568. doi: 10.1210/endo.138.6.5212
  • Pohlenz J, Maqueem A, Cua K, et al. Improved radioimmunoassay for measurement of mouse thyrotropin in serum: strain differences in thyrotropin concentration and thyrotroph sensitivity to thyroid hormone. Thyroid. 1999;9(12):1265–1271. doi: 10.1089/thy.1999.9.1265
  • Hernandez A, Quignodon L, Martinez ME, et al. Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology. 2010;151(11):5550–5558. doi: 10.1210/en.2010-0450
  • Zhu W, Botticelli EM, Kery RE, et al. Meg3-DMR, not the Meg3 gene, regulates imprinting of the Dlk1-Dio3 locus. Dev Biol. 2019;455(1):10–18. doi: 10.1016/j.ydbio.2019.07.005
  • da Rocha St, Edwards CA, Ito M, et al. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 2008;24(6):306–316. doi: 10.1016/j.tig.2008.03.011
  • Martinez ME, Hernandez A. The type 3 deiodinase is acritical modulator of thyroid hormone sensitivity in the fetal brain. Front Neurosci. 2021;15:703–730. doi: 10.3389/fnins.2021.703730
  • Martinez ME, Wu Z, Hernandez A. Paternal developmental thyrotoxicosis disrupts neonatal leptin leading to increased adiposity and altered physiology of the melanocortin system. Front Endocrinol (Lausanne). 2023;14:1210414. doi: 10.3389/fendo.2023.1210414
  • Prokopuk L, Western PS, Stringer JM. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics. 2015;7(5):829–846. doi: 10.2217/epi.15.36
  • Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–262. doi: 10.1038/nrg2045
  • Jirtle RL, Sander M, Barrett JC. Genomic imprinting and environmental disease susceptibility. Environ Health Perspect. 2000;108(3):271–278. doi: 10.1289/ehp.00108271
  • Feinberg AP. Mendel stayed home. Trends in Genetics. 1999;15(2):46. doi: 10.1016/SO168-9525(98)01663-1
  • Hernandez A, Park JP, Lyon GJ, et al. Localization of the type 3 iodothyronine deiodinase (DIO3) gene to human chromosome 14q32 and mouse chromosome 12F1. Genomics. 1998;53(1):119–121. doi: 10.1006/geno.1998.5505
  • Hernandez A, Stohn JP. The type 3 deiodinase: epigenetic control of brain thyroid hormone action and neurological function. Int J Mol Sci. 2018;19(6):1804. doi: 10.3390/ijms19061804
  • Lin SP, Youngson N, Takada S, et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet. 2003;35(1):97–102. doi: 10.1038/ng1233
  • Charalambous M, da Rocha St, Hernandez A, et al. Perturbations to the IGF1 growth pathway and adult energy homeostasis following disruption of mouse chromosome 12 imprinting. Acta Physiol (Oxf). 2014;210(1):174–187. doi: 10.1111/apha.12160
  • Charalambous M, Ferron SR, da Rocha St, et al. Imprinted gene dosage is critical for the transition to independent life. Cell metabolism 2012; 15(2):209–221. doi: 10.1016/j.cmet.2012.01.006
  • Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WIREs RNA. 2017;8(4). doi: 10.1002/wrna.1417
  • Stelzer Y, Sagi I, Yanuka O, et al. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46(6):551–557. doi: 10.1038/ng.2968
  • Wilkins JF. Genomic imprinting of Grb10: coadaptation or conflict? PLOS Biol. 2014;12(2):e1001800. doi: 10.1371/journal.pbio.1001800
  • Haig D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb). 2014;113(2):96–103. doi: 10.1038/hdy.2013.97
  • Weinstein LS, Yu S, Warner DR, et al. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. [Review] [416 refs]. Endocr Rev. 2001 Oct;22(5):675–705. doi: 10.1210/edrv.22.5.0439
  • Preece MA, Moore GE. Genomic imprinting, uniparental disomy and foetal growth. Trends Endocrinol & Metab. 2000;11(7):270–275. doi: 10.1016/S1043-2760(00)00277-0
  • Nicholls RD. The impact of genomic imprinting for neurobehavioral and developmental disorders. J Clin Invest. 2000;105(4):413–418. doi: 10.1172/JCI9460
  • Wu Z, Martinez ME, St Germain DL, et al. Type 3 deiodinase role on central thyroid hormone action affects the leptin-melanocortin system and circadian activity. Endocrinology. 2017;158(2):419–430. doi: 10.1210/en.2016-1680
  • Stohn JP, Martinez ME, Hernandez A. Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase- deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology. 2016;74:46–56. doi: 10.1016/j.psyneuen.2016.08.021
  • Stohn JP, Martinez ME, Zafer M, et al. Increased aggression and lack of maternal behavior in Dio3-deficient mice are associated with abnormalities in oxytocin and vasopressin systems. Genes Brain Behav. 2018;17(1):23–35. doi: 10.1111/gbb.12400
  • Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146(10):4211–4216. doi: 10.1210/en.2005-0581
  • Childs GV, Odle AK, MacNicol MC, et al. The importance of leptin to reproduction. Endocrinology. 2021;162(2):162. doi: 10.1210/endocr/bqaa204
  • Fonseca TL, Garcia T, Fernandes GW, et al. Neonatal thyroxine activation modifies epigenetic programming of the liver. Nat Commun. 2021;12(1):4446. doi: 10.1038/s41467-021-24748-8
  • Hernandez A, Martinez ME, Liao XH, et al. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology. 2007;148(12):5680–5687. doi: 10.1210/en.2007-0652
  • Stohn JP, Martinez ME, St Germain DL, et al. Adult onset of type 3 deiodinase deficiency in mice alters brain gene expression and increases locomotor activity. Psychoneuroendocrinology. 2019;110:104439. doi: 10.1016/j.psyneuen.2019.104439