3,414
Views
162
CrossRef citations to date
0
Altmetric
Research Paper

Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

, &
Article: e1003751 | Received 02 Dec 2014, Accepted 22 Dec 2014, Published online: 01 Apr 2015

References

  • Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot 2003; 91:503-27; PMID:12646496; http://dx.doi.org/10.1093/aob/mcg058
  • Munns R. Comparative physiology of salt and water stress. Plant Cell Environ 2002; 25:239-50; PMID:11841667; http://dx.doi.org/10.1046/j.0016-8025.2001.00808.x
  • Wang X, Fan P, Song H, Chen X, Li X, Li Y. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 2009; 8:3331-45; PMID:19445527; http://dx.doi.org/10.1021/pr801083a
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Clarendon, Oxford, 1985
  • Turan S, Tripathy BC. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 2013; 250:209-22; PMID:22434153; http://dx.doi.org/10.1007/s00709-012-0395-5
  • Steduto P, Albrizio R, Giorio P, Sorrentino G. Gas exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environ Exp Bot 2000; 44:243-55; PMID:11064044; http://dx.doi.org/10.1016/S0098-8472(00)00071-X
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008; 9:651-81; http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH. Glutathione: biosynthesis, metabolism, and relationship to stress tolerance explored in transformed plants. J Exp Bot 1998; 49:623-47
  • Kumar B, Singla-Pareek SL, Sopory SK. Glutathione homeostasis: crucial for abiotic stress tolerance in plants. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee, ed. Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomics Foundation. The Netherlands: Springer, 2010:263-82
  • Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. J Plant Physiol 2006; 141:391-96; http://dx.doi.org/10.1104/pp.106.082040
  • Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 2004; 55:1955-62; PMID:15234995; http://dx.doi.org/10.1093/jxb/erh194
  • Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ 2013; 36:1135-46; PMID:23210597; http://dx.doi.org/10.1111/pce.12048
  • Szalai G, Kellos T, Galiba G, Kocsy G. Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 2009; 28:66-80; http://dx.doi.org/10.1007/s00344-008-9075-2
  • Kopriva S, Rennenberg H. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 2004; 55:1831-42; PMID:15286142; http://dx.doi.org/10.1093/jxb/erh203
  • Yi H, Galant A, Ravilious G, Preuss M, Jez J. Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 2010; 3:269-79; PMID:20080815; http://dx.doi.org/10.1093/mp/ssp112
  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 2013; 94:73-88; http://dx.doi.org/10.1016/j.envexpbot.2012.05.003
  • Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 2011; 168:807-15; PMID:21112120; http://dx.doi.org/10.1016/j.jplph.2010.11.001
  • Li G, Peng X, Wei L, Kang G. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 2013; 529:321-25; PMID:23948081; http://dx.doi.org/10.1016/j.gene.2013.07.093
  • Yazdanpanah S, Baghizadeh A, Abbassi F. The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. Afr J Agr 2011; 6:798-807
  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 2013; 8:263-74; http://dx.doi.org/10.4161/psb.22478
  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Environ 2012; 35:454-84; http://dx.doi.org/10.1111/j.1365-3040.2011.02400.x
  • Nazar R, Khan NA, Anjum NA. ATP-sulfurylase activity, photosynthesis, and shoot dry mass of mustard (Brassica juncea L.) cultivars differing in sulfur accumulation capacity. Phosynth 2008; 46:279-82
  • Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agron Soil Sci 2005; 51:687-95; http://dx.doi.org/10.1080/03650340500336075
  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 2007; 164:728-36; PMID:16690163; http://dx.doi.org/10.1016/j.jplph.2005.12.009
  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 2013; 64:2255-68; PMID:23580750; http://dx.doi.org/10.1093/jxb/ert085
  • El-Tayeb MA. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 2005; 45:215-24; http://dx.doi.org/10.1007/s10725-005-4928-1
  • Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 2014; 5:1-12; http://dx.doi.org/10.3389/fpls.2014.00004
  • Polle A, Rennenberg H. Significance of antioxidants in plant adaptation to environmental stress. In: Fowden L, Mansfield T, Stoddart J, ed. Plant Adaptation to Environmental Stress. London: Chapman and Hall, 1993:264-73
  • Hossain MA, Ismail MR, Kamal Uddin M, Islam MZ, Ashrafuzzaman M. Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Aust J Crop Sci 2013; 7:1801-08.
  • Munné-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 2002; 21:31-57; http://dx.doi.org/10.1080/0735-260291044179
  • Noctor G, Foyer CH, Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 1998; 49:249-729; PMID:15012235; http://dx.doi.org/10.1146/annurev.arplant.49.1.249
  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA. Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 2008; 54:271-79; http://dx.doi.org/10.1007/s10725-007-9251-6
  • Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Plant Physiol 2001; 113:158-64; http://dx.doi.org/10.1034/j.1399-3054.2001.1130202.x
  • Han, Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 2013; 18:2106-121; http://dx.doi.org/10.1089/ars.2012.5052
  • Lappartient AG, Touraine B. Demand-driven control of root ATP sulfurylase activity and SO42− uptake in intact canola. Plant Physiol 1996; 111:147-57; PMID:12226281
  • Lappartient AG, Vidmar JJ, Leustek T, Glass AD, Touraine B. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 1999; 18:89-95; PMID:10341446; http://dx.doi.org/10.1046/j.1365-313X.1999.00416.x
  • Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 2004; 136:3396-408; PMID:15377780; http://dx.doi.org/10.1104/pp.104.046441
  • Herschbach C, Rennenberg H. Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. J Exp Bot 1994; 45:1069-76; http://dx.doi.org/10.1093/jxb/45.8.1069
  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold B. Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 2002; 31:729-40; PMID:12220264; http://dx.doi.org/10.1046/j.1365-313X.2002.01391.x
  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE. Constitutively elevated salicylic acid signals glutathione mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 2005; 137:1082-91; PMID:15734913; http://dx.doi.org/10.1104/pp.104.055293
  • Hacham Y, Koussevitzky S, Kirma M, Amir R. Glutathione application affects the transcript profile of genes in Arabidopsis seedlings. J Plant Physiol 2014; 171:1444-51; PMID:25077999; http://dx.doi.org/10.1016/j.jplph.2014.06.016
  • Khan NA, Nazar R, Anjum NA. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hort 2009; 122:455-60; http://dx.doi.org/10.1016/j.scienta.2009.05.020
  • Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signal ling in the response of plants to abiotic stress. Plant Cell Environ 2012; 35:259-70; PMID:21486305; http://dx.doi.org/10.1111/j.1365-3040.2011.02336.x
  • Astolfi S, Zuchi S. Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 2013; 35:175-81; http://dx.doi.org/10.1007/s11738-012-1060-5
  • Chaves MM, Costa JM, Madeira-Sabo NJ. Recent advances in photosynthesis under drought and salinity. Adv Bot Res 2011; 57:49-104; http://dx.doi.org/10.1016/B978-0-12-387692-8.00003-5
  • Miteva TS, Zhelev NZh, Popova LP. Effect of salinity on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 1992; 140:46-51; http://dx.doi.org/10.1016/S0176-1617(11)81055-2
  • Ziska LH, Seemann JR, DeJong TM. Salinity induced limitation ns on photosynthesis in Prunus salicina, a deciduous tree species. Plant Physiol 1990; 93:864-70; PMID:16667594; http://dx.doi.org/10.1104/pp.93.3.864
  • Arfan M, Athar HR Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 2007; 164:685-94; PMID:16884826; http://dx.doi.org/10.1016/j.jplph.2006.05.010
  • Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 2011; 155:125-9; PMID:20959423; http://dx.doi.org/10.1104/pp.110.165076
  • Dhindsa RH, Plumb-Dhindsa P, Thorpe TA. Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J Exp Bot 1981; 32:93-101; http://dx.doi.org/10.1093/jxb/32.1.93
  • Okuda T, Masuda Y, Yamanka A, Sagisaka S. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 1991; 97:1265-7; PMID:16668520; http://dx.doi.org/10.1104/pp.97.3.1265
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981; 22:867-80
  • Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 1976; 133:21-25; PMID:24425174; http://dx.doi.org/10.1007/BF00386001
  • Kredich NM, Tomkins GM. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 1966; 21:4955-65
  • Chesnin L, Yien CH. Turbidimetric determination of available sulphates. Soil Sci Soc Am Proc 1950; 15:149-51; http://dx.doi.org/10.2136/sssaj1951.036159950015000C0032x
  • Giatonde MK. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 1967; 104:627-33; PMID:6048802
  • Law ME, Charles SA, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts: The effect of hydrogen peroxide and of paraquat. Biochem J 1983; 210:899-903; PMID:6307273
  • Anderson ME. Determination of glutathione and glutathione disulfides in biological sample. Methods Enzymol 1985; 113:548-70; PMID:4088074; http://dx.doi.org/10.1016/S0076-6879(85)13073-9
  • Usuda H. The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol 1985; 26:1455-63
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilising the principle of protein–dye binding. Anal Biochem 1976; 72:248-54; PMID:942051; http://dx.doi.org/10.1016/0003-2697(76)90527-3
  • Von Cammerer S, Farquhar GD. Some relationship between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981; 153:376-87; PMID:24276943; http://dx.doi.org/10.1007/BF00384257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.