8,328
Views
166
CrossRef citations to date
0
Altmetric
Review

Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms

, , , , &
Article: e1048052 | Received 21 Apr 2015, Accepted 30 Apr 2015, Published online: 31 Aug 2015

References

  • Darwin C, Darwin F. The power of movement in plants. London, England: Murray; 1880.
  • Kögl F, Haagen-Smits AJ. Über die chemie des wuchsstoffs. Proc K Ned Akad Wet. 1931; 34:1411-1416.
  • Spaepen S, Vanderleyden J. Auxin and plant – microbe interactions. Cold Spring Harb Perspect Biol 2011; 3:a001438; PMID:21084388; http://dx.doi.org/10.1101/cshperspect.a001438
  • Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007; 31:425-48; PMID:17509086; http://dx.doi.org/10.1111/j.1574-6976.2007.00072.x
  • Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 2006; 7:847-59; PMID:16990790; http://dx.doi.org/10.1038/nrm2020
  • Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. Indole‐3‐acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 2008; 9:339-55; PMID:18705875; http://dx.doi.org/10.1111/j.1364-3703.2008.00470.x
  • Chung KR, Shilts T, Ertürk ⇐, Timmer L, Ueng PP. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 2003; 226:23-30; PMID:13129603; http://dx.doi.org/10.1016/S0378-1097(03)00605-0
  • Gopinathan S, Raman N. Indole 3-acetic acid production by ectomycorrhizal fungi. Indian J Exp Biol 1992; 30:142-3; PMID:1521864
  • Limtong S, Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 2012; 28:3323-35; PMID:22886557; http://dx.doi.org/10.1007/s11274-012-1144-9
  • Jameson P. Cytokinins and auxins in plant - pathogen interactions-an overview. Plant Growth Regul 2000; 32:369-80; http://dx.doi.org/10.1023/A:1010733617543
  • Mole BM, Baltrus DA, Dangl JL, Grant SR. Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol 2007; 15:363-71; PMID:17627825; http://dx.doi.org/10.1016/j.tim.2007.06.005
  • Yuan Z-C, Liu P, Saenkham P, Kerr K, Nester EW. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium - plant interactions. J Bacteriol 2008; 190:494-507; PMID:17993523; http://dx.doi.org/10.1128/JB.01387-07
  • Prusty R, Grisafi P, Fink GR. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:4153-7; PMID:15010530; http://dx.doi.org/10.1073/pnas.0400659101
  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria - plant interactions. Trends Microbiol 2000; 8:298-300; PMID:10878760; http://dx.doi.org/10.1016/S0966-842X(00)01732-7
  • Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 2010; 34:426-44; PMID:20070374
  • Basse CW, Lottspeich F, Steglich W, Kahmann R. Two Potential Indole‐3‐Acetaldehyde Dehydrogenases in the Phytopathogenic Fungus Ustilago maydis. Eur J Biochem 1996; 242:648-56; PMID:9022693; http://dx.doi.org/10.1111/j.1432-1033.1996.0648r.x
  • Rao RP, Hunter A, Kashpur O, Normanly J. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics 2010; 185:211-20; PMID:20233857; http://dx.doi.org/10.1534/genetics.109.112854
  • Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot 2012; 63:2853-72; PMID:22447967; http://dx.doi.org/10.1093/jxb/ers091
  • Sitbon F, Åstot C, Edlund A, Crozier A, Sandberg G. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 2000; 211:715-21; PMID:11089685; http://dx.doi.org/10.1007/s004250000338
  • Zhang R, Wang B, Ouyang J, Li J, Wang Y. Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the trp‐independent indole‐containing metabolite biosynthesis. J Integr Plant Biol 2008; 50:1070-7; PMID:18844775; http://dx.doi.org/10.1111/j.1744-7909.2008.00729.x
  • Ouyang J, Shao X, Li J. Indole‐3‐glycerol phosphate, a branchpoint of indole‐3‐acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 2000; 24:327-34; PMID:11069706; http://dx.doi.org/10.1046/j.1365-313x.2000.00883.x
  • Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant - microbe interactions. Antonie Van Leeuwenhoek 2014; 106:85-125; PMID:24445491; http://dx.doi.org/10.1007/s10482-013-0095-y
  • Zakharova EA, Shcherbakov AA, Brudnik VV, Skripko NG, Bulkhin NS, Ignatov VV. Biosynthesis of indole‐3‐acetic acid in Azospirillum brasilense. Eur J Biochem 1999; 259:572-6; PMID:10092839; http://dx.doi.org/10.1046/j.1432-1327.1999.00033.x
  • Robinson M, Riov J, Sharon A. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 1998; 64:5030-2; PMID:9835603
  • Kulkarni GB, Sanjeevkumar S, Kirankumar B, Santoshkumar M, Karegoudar T. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea. Appl Biochem Biotechnol 2013; 169:1292-305; PMID:23306880; http://dx.doi.org/10.1007/s12010-012-0037-6
  • Sun P-F, Fang W-T, Shin L-Y, Wei J-Y, Fu S-F, Chou J-Y. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 2014; 9:e114196; PMID:25464336; http://dx.doi.org/10.1371/journal.pone.0114196
  • Xin G, Glawe D, Doty SL. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res 2009; 113:973-80; PMID:19539760; http://dx.doi.org/10.1016/j.mycres.2009.06.001
  • Strzelczyk E, Pokojska A, Kampert M. The effect of pH on production of plant growth regulators by mycorrhizal fungi. Symbiosis 1992; 14:201-215.
  • Bose A, Shah D, Keharia H. Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology 2013; 4:103-11; http://dx.doi.org/10.1080/21501203.2013.823891
  • Yu PH, Chen C-C, Wu L. Production of indoleacetic acid by Nectria pterospermi saw. Bot Bul Acad Sinica 1970; 11:98-104.
  • Zakharova EA, Iosipenko AD, Ignatov VV. Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol Res 2000; 155:209-14; PMID:11061189; http://dx.doi.org/10.1016/S0944-5013(00)80034-8
  • Patil NB, Gajbhiye M, Ahiwale SS, Gunjal AB, Kapadnis BP. Optimization of Indole 3acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from Sugarcane. Int J Environ Sci 2011; 2:295-302.
  • Sridevi M, Mallaiah K. Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afr J Microbiol Res 2007; 1:125-8.
  • Shokri D, Emtiazi G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol 2010; 61:217-25; PMID:20526603; http://dx.doi.org/10.1007/s00284-010-9600-y
  • Yurekli F, Geckil H, Topcuoglu F. The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajor-caju under different culture conditions. Mycol Res 2003; 107:305-9; PMID:12825499; http://dx.doi.org/10.1017/S0953756203007391
  • Gunasekaran M. Physiological studies on Phymatotrichum omnivorum. IX. Synthesis of indole acetic acid in vitro. Microbios 1977; 22:85-91; PMID:38376
  • Hasan H. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol Immunol Hung 2002; 49:105-18; PMID:12073817; http://dx.doi.org/10.1556/AMicr.49.2002.1.11
  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005; 21:319-46; PMID:16212498; http://dx.doi.org/10.1146/annurev.cellbio.21.012704.131001
  • Parsek MR, Greenberg E. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 2005; 13:27-33; PMID:15639629; http://dx.doi.org/10.1016/j.tim.2004.11.007
  • Vediyappan G, Dumontet V, Pelissier F, d'Enfert C. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One 2013; 8:e74189; PMID:24040201; http://dx.doi.org/10.1371/journal.pone.0074189
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol 2011; 9:737-48; PMID:21844880; http://dx.doi.org/10.1038/nrmicro2636
  • Epstein E, Sagee O, Cohen JD, Garty J. Endogenous auxin and ethylene in the lichen Ramalina duriaei. Plant Physiol 1986; 82:1122-5; PMID:16665145; http://dx.doi.org/10.1104/pp.82.4.1122
  • Aloni R, Aloni E, Langhans M, Ullrich C. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 2006; 97:883-93; PMID:16473866; http://dx.doi.org/10.1093/aob/mcl027
  • Fu J, Wang S. Insights into auxin signaling in plant - pathogen interactions. Front Plant Sci 2011; 2; PMID:22639609
  • Tian H, De Smet I, Ding Z. Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 2014; 19:426-31; PMID:24513255; http://dx.doi.org/10.1016/j.tplants.2014.01.007
  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 2001; 13:843-52; PMID:11283340; http://dx.doi.org/10.1105/tpc.13.4.843
  • Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol 2010; 2:a001537; PMID:20516130; http://dx.doi.org/10.1101/cshperspect.a001537
  • Ferguson BJ, Beveridge CA. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 2009; 149:1929-44; PMID:19218361; http://dx.doi.org/10.1104/pp.109.135475
  • Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2010; 2:a001511; PMID:20182604; http://dx.doi.org/10.1101/cshperspect.a001511
  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J. The role of microbial signals in plant growth and development. Plant Signal Behav 2009; 4:701-12; PMID:19820333; http://dx.doi.org/10.4161/psb.4.8.9047
  • Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 2014; 31:1266-76; PMID:25140791; http://dx.doi.org/10.1039/C4NP00071D
  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 2009; 149:1579-92; PMID:19176721; http://dx.doi.org/10.1104/pp.108.130369
  • Mukherjee S, Sen SK. Exploration of novel rhizospheric yeast isolate as fertilizing soil inoculant for improvement of maize cultivation. J Sci Food Agric 2015;95:1491-9; PMID:25065763; http://dx.doi.org/10.1002/jsfa.6848
  • Amprayn K-O, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 2012; 61:295-9; http://dx.doi.org/10.1016/j.apsoil.2011.11.009
  • Nassar AH, El-Tarabily KA, Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fert Soils 2005; 42:97-108; http://dx.doi.org/10.1007/s00374-005-0008-y
  • Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012; 158:17-25; PMID:21998166; http://dx.doi.org/10.1099/mic.0.052274-0
  • Verma V, Singh S, Prakash S. Bio‐control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 2011; 51:550-6; PMID:21656792; http://dx.doi.org/10.1002/jobm.201000155
  • Radhakrishnan R, Shim K-B, Lee B-W, Hwang C-D, Pae S-B, Park C-H, Kim SU, Lee CK, Baek IY. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J Microbiol Biotechnol 2013; 23:856-63; PMID:23676921; http://dx.doi.org/10.4014/jmb.1209.09045
  • Jogaiah S, Abdelrahman M, Tran L-SP, Shin-ichi I. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 2013; 64:3829-42; PMID:23956415; http://dx.doi.org/10.1093/jxb/ert212
  • Maor R, Haskin S, Levi-Kedmi H, Sharon A. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 2004; 70:1852-4; PMID:15006816; http://dx.doi.org/10.1128/AEM.70.3.1852-1854.2004
  • Cohen BA, Amsellem Z, Maor R, Sharon A, Gressel J. Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology 2002; 92:590-6; PMID:18944254; http://dx.doi.org/10.1094/PHYTO.2002.92.6.590
  • Kulkarni GB, Sajjan SS, Karegoudar T. Pathogenicity of indole-3-acetic acid producing fungus Fusarium delphinoides strain GPK towards chickpea and pigeon pea. Eur J Plant Pathol 2011; 131:355-69; http://dx.doi.org/10.1007/s10658-011-9813-3
  • Harrison MJ. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 2005; 59:19-42; PMID:16153162; http://dx.doi.org/10.1146/annurev.micro.58.030603.123749
  • Foo E, Ross JJ, Jones WT, Reid JB. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 2013; 111:769-79; PMID:23508650; http://dx.doi.org/10.1093/aob/mct041
  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 2005; 222:709-15; PMID:16025340; http://dx.doi.org/10.1007/s00425-005-0003-4
  • Kaldorf M, Ludwig‐Müller J. AM fungi might affect the root morphology of maize by increasing indole‐3‐butyric acid biosynthesis. Physiol Plant 2000; 109:58-67; http://dx.doi.org/10.1034/j.1399-3054.2000.100109.x
  • Yao Q, Zhu H, Chen J. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Sci Hort 2005; 105:145-51; http://dx.doi.org/10.1016/j.scienta.2005.01.003
  • Jentschel K, Thiel D, Rehn F, Ludwig‐Müller J. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiol Plant 2007; 129:320-33; http://dx.doi.org/10.1111/j.1399-3054.2006.00812.x
  • Etemadi M, Gutjahr C, Couzigou J, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 2014; 166:281-92; PMID:25096975; http://dx.doi.org/10.1104/pp.114.246595
  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L. Global and cell‐type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 2009; 184:975-87; PMID:19765230; http://dx.doi.org/10.1111/j.1469-8137.2009.03031.x
  • Nuray E. Auxin (indole-3-acetic acid), gibberellic acid (GA3), abscisic acid (ABA) and cytokinin (zeatin) production by some species of mosses and lichens. Turk J Bot 2002; 26:13-8.
  • Sergeeva E, Liaimer A, Bergman B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 2002; 215:229-38; PMID:12029472; http://dx.doi.org/10.1007/s00425-002-0749-x
  • Yue J, Hu X, Huang J. Origin of plant auxin biosynthesis. Trends Plant Sci 2014; 19:764-70; PMID:25129418; http://dx.doi.org/10.1016/j.tplants.2014.07.004
  • Lau S, Shao N, Bock R, Jürgens G, De Smet I. Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 2009; 14:182-8; PMID:19285905; http://dx.doi.org/10.1016/j.tplants.2009.01.004
  • Xiao-dong D, Xiao-xia W, Xin-zhao F, Xiao-wen F, Da-ming R. Effects of indole-3-acetic acid and abscisic acid on growth and lipid accumulation of Chlorella sp. Chin J Oil Crop Sci 2013; 35.
  • Bagwell CE, Piskorska M, Soule T, Petelos A, Yeager CM. A diverse assemblage of indole-3-acetic acid producing bacteria associate with unicellular green algae. Appl Biochem Biotechnol 2014; 173:1977-84; PMID:24879600; http://dx.doi.org/10.1007/s12010-014-0980-5
  • Hoffman MT, Arnold AE. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 2010; 76:4063-75; PMID:20435775; http://dx.doi.org/10.1128/AEM.02928-09
  • Wang C, Liu Y, Li S-S, Han G-Z. Origin of plant auxin biosynthesis in charophyte algae. Trends Plant Sci 2014; 19:741-3; PMID:25457112; http://dx.doi.org/10.1016/j.tplants.2014.10.004
  • Huang J, Yue J, Hu X. Origin of plant auxin biosynthesis in charophyte algae: a reply to Wang et al. Trends Plant Sci 2014; 19:743; PMID:25458847; http://dx.doi.org/10.1016/j.tplants.2014.10.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.