1,797
Views
55
CrossRef citations to date
0
Altmetric
Research Paper

Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

, , , , , & show all
Article: e1113363 | Received 14 Sep 2015, Accepted 21 Oct 2015, Published online: 03 Mar 2016

Reference

  • Khan N, MishraA, NautiyalCS. Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biol Cont 2012b; 62:65-74; PMID:17089220; http://dx.doi.org/10.1016/j.biocontrol.2012.03.010
  • Mullen J. Southern blight, Southern stem blight, White mold. The Plant Health Instructor 2001
  • Kwon JH, Stem Park CS. Rot of tomato caused by Sclerotium rolfsii in Gyeongsangnam-do agricultural research and extension services. Mycobiol 2002; 30:244-6; http://dx.doi.org/10.4489/MYCO.2002.30.4.244
  • Kwon JH, Chi TTP, Park CS. Occurrence of fruit rot of melon caused by Sclerotium rolfsiiin Korea. Mycobiol 2009; 37:158-9; http://dx.doi.org/10.4489/MYCO.2009.37.2.158
  • Sharma R, Arunabh J, Dhaker RC. A brief review on mechanism of trichoderma fungus use as biological control agents. Int J Innov Bio-Sci 2012; 2:200-10
  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2014; 169:30-9; PMID:24095256; http://dx.doi.org/10.1016/j.micres.2013.09.009
  • Gontia-Mishra I, Sasidharan S, Tiwari S. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 2014; 36:889-98; PMID:24563292; http://dx.doi.org/10.1007/s10529-014-1458-9
  • Compant S, Duffy B, Nowak J, Cle´ment C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71:4951-9; PMID:16151072; http://dx.doi.org/10.1128/AEM.71.9.4951-4959.2005
  • Zahir AZ, Ghani U, Naveed M, Nadeem SM, Asghar HN. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 2009; 191:415-24; PMID:19255743; http://dx.doi.org/10.1007/s00203-009-0466-y
  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U. Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 2008; 54:529-36; http://dx.doi.org/10.1111/j.1747-0765.2008.00272.x
  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact. 2011; 6:1-14; http://dx.doi.org/10.1080/17429145.2010.535178
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochemy 2010; 48: 909-30; PMID:20870416; http://dx.doi.org/10.1016/j.plaphy.2010.08.016
  • Bhattacharjee S. The language of reactive oxygen species signaling in plants. J Bot 2012; 2012:985298; http:dx.doi.org/10.1155/2012/985298
  • Bouchez O, Huard C, Lorrain S, Roby D, Balagué C. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiol 2007; 145:465-77; PMID:17720753; http://dx.doi.org/10.1104/pp.107.106302
  • Fracetto GGM, Peres LEP, Mehdy MC, Lambais MR. Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis 2013; 60:155-67; http://dx.doi.org/10.1007/s13199-013-0251-1
  • Raffaele S, Vailleau F, Lége A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergueand F, Roby D. A MYB transcription factor regulates very long chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 2008; 20:752-67; PMID:18326828; http://dx.doi.org/10.1105/tpc.107.054858
  • Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal bio control agents. Ann Rev Phytopathol 2010; 48:21-43; PMID:20192757; http://dx.doi.org/10.1146/annurev-phyto-073009-114450
  • Jetiyanon K. Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biol Cont 2007; 42:178-85; http://dx.doi.org/10.1016/j.biocontrol.2007.05.008
  • Magnin-Robert M, Trotel-Aziz P, Quantinet D, Biagianti S, Aziz A. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and α-1,3 glucanase activities under field conditions. Eur J Plant Pathol 2007; 118:43-57; http://dx.doi.org/10.1007/s10658-007-9111-2
  • Mandal S, Mitra A, Mallick N. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f.sp.lycopersici. Physiol Mol Plant Pathol 2008; 72: 56-61; http://dx.doi.org/10.1016/j.pmpp.2008.04.002
  • Van Wees SC, Van der Ent S, Pieterse CM. Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 2008; 11:443-8; PMID:18585955; http://dx.doi.org/10.1016/j.pbi.2008.05.005
  • Jung SH, Lee JY, Lee DH. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing Cold stress. Plant Mol Biol 2003; 52:553-67; PMID:12956526; http://dx.doi.org/10.1023/A:1024866716987
  • Nautiyal CS, Dasgupta SM, Singh, HB, Pushpangadan P. Synergistic bioinoculant composition comprising bacterial strains of accession Nos. NRRLB-30486, NRRL B-30487 and NRRL B-30488 and method of producing said composition thereof. US Patent 7097830; 2006.
  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P. Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B–30488. J Agr Food Chem 2008; 56:4474-81; http://dx.doi.org/10.1021/jf073258i
  • DasGupta SM, Khan N, Nautiyal CS. Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk. Curr Microbiol 2006; 53:502-5; PMID:17089220; http://dx.doi.org/10.1007/s00284-006-0261-9
  • Khan N, Mishra A, Chauhan PS, Nautiyal CS. Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Ann Appl Biol 2011; 159: 372-86; http://dx.doi.org/10.1111/j.1744-7348.2011.00502.x
  • Khan N, Mishra A, Chauhan PS, Sharma YK, Nautiyal CS. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie van Leeuwenhoek 2012a; 101: 453-9; PMID:21909789; http://dx.doi.org/10.1007/s10482-011-9637-3
  • Hennin C, Diederichsen E, Höfte M. Resistance to fungal pathogens triggered by the Cf9-Avr9 response in tomato and oilseed rape in the absence of hypersensitive cell death. Mol Plant Pathol 2002; 3: 31-41; PMID:20569306; http://dx.doi.org/10.1046/j.1464-6722.2001.00093.x
  • Liu L, Kloeppper JW, Tuzun S. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 1995; 85:695-8; http://dx.doi.org/10.1094/Phyto-85-695
  • Madhaiyan M, Poonguzhali S, Sa T. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 2007; 226:867-76; PMID:17541630; http://dx.doi.org/10.1007/s00425-007-0532-0
  • Siddikee MA, Chauhan PS, Sa T. Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. J Plant Growth Reg 2012; 31:265-72; http://dx.doi.org/10.1007/s00344-011-9236-6
  • Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic bio membranes. Meth Enzymol 1987; 148:350-82; http://dx.doi.org/10.1016/0076-6879(87)48036-1
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil 1973; 39:205-7; http://dx.doi.org/10.1007/BF00018060
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968; 125:189-98; PMID:5655425; http://dx.doi.org/10.1016/0003-9861(68)90654-1
  • Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44:276-87; PMID:4943714; http://dx.doi.org/10.1016/0003-2697(71)90370-8
  • Chandlee JM, Scandalios JC. Gene expression during early kernel development in Zea mays. Dev Genet 1983; 4:99-115; PMID:4943714; http://dx.doi.org/10.1002/dvg.1020040205
  • Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-54; PMID:942051; http://dx.doi.org/10.1016/0003-2697(76)90527-3
  • Zheng X, Huystee RBV. Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci 1992; 81:47-56; http://dx.doi.org/10.1016/0168-9452(92)90023-F
  • Hemeda HM, Klein BP. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 1990; 55:184-5; http://dx.doi.org/10.1111/j.1365-2621.1990.tb06048.x
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981; 22:867-80
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−delta delta C(T)) method. Methods 2001; 25:402-8; PMID:11846609; http://dx.doi.org/10.1006/meth.2001.1262
  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 2006; 224:268-78; PMID:16416316; http://dx.doi.org/10.1007/s00425-005-0211-y
  • Yim WJ, Sundaram S, Kim KY, Lee G, Sa T. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 2013; 67: 95-104; PMID:23558008; http://dx.doi.org/10.1016/j.plaphy.2013.03.002
  • Yim WJ, Kim KY, Lee YW, Sundaram SP, Lee Y, Sa, TM. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. Vesicatoria. J Plant Physiol 2014; 171:1064-75; PMID:24974333; http://dx.doi.org/10.1016/j.jplph.2014.03.009
  • Edreva A. Pathogenesis-related proteins: research progress in the last 15 years. Appl Plant Physiol 2005; 31:105-24
  • Chen C, Be´ Langer R, Benhamou N, Paulitz TC. Defence enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 2000; 56:13-23; http://dx.doi.org/10.1006/pmpp.1999.0243

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.