697
Views
4
CrossRef citations to date
0
Altmetric
Article Addendum

Possible pathways linking ploidy level to cell elongation and cuticular function in hypocotyls of dark-grown Arabidopsis seedlings

, &
Article: e1118597 | Received 09 Oct 2015, Accepted 04 Nov 2015, Published online: 03 Mar 2016

References

  • Müntzing A. The evolutionary significance of autopolyploidy. Hereditas 1936; 21:263-378
  • Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y. Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 2012; 236:579-96; PMID:22476290; http://dx.doi.org/10.1007/s00425-012-1629-7
  • Yu Z, Haage K, Streit V, Gierl A, Ruiz RA. Large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theor Appl Genet 2009; 118:1107-19; PMID:19205656; http://dx.doi.org/10.1007/s00122-009-0966-9
  • Sugimoto-Shirasu K, Roberts K. "Big it up:" endoreduplication and cell-size control in plants. Curr Opin Plant Biol 2003; 6:544-53; PMID:14611952; http://dx.doi.org/10.1016/j.pbi.2003.09.009
  • Yu Z, Haberer G, Matthes M, Rattei T, Mayer KF, Gierl A, Torres-Ruiz RA. Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Nati Acad Sci USA 2010; 107:17809-14; http://dx.doi.org/10.1073/pnas.1000852107
  • Narukawa H, Yokoyama R, Komaki S, Sugimoto K, Nishitani K. Stimulation of cell elongation by tetraploidy in hypocotyls of dark-grown Arabidopsis seedlings. PLoS One 2015; 10:e0134547; PMID:26244498; http://dx.doi.org/10.1371/journal.pone.0134547
  • Yeats TH, Rose JK. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 2008; 17:191-8; PMID:18096636; http://dx.doi.org/10.1110/ps.073300108
  • Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J 2004; 37:139-46; PMID:14675439; http://dx.doi.org/10.1046/j.1365-313X.2003.01946.x
  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 2003; 15:1170-85; PMID:12724542; http://dx.doi.org/10.1105/tpc.010926
  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 2007; 52:485-98; PMID:17727615; http://dx.doi.org/10.1111/j.1365-313X.2007.03252.x
  • Go YS, Kim H, Kim HJ, Suh MC. Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-Type transcription factor. Plant Cell 2014; 26:1666-80; PMID:24692420; http://dx.doi.org/10.1105/tpc.114.123307
  • Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 2012; 53:1391-403; PMID:22891199; http://dx.doi.org/10.1093/pcp/pcs083
  • Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 2009; 150:42-54; PMID:19321705; http://dx.doi.org/10.1104/pp.109.137745
  • Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 2008; 59:683-707; PMID:18251711; http://dx.doi.org/10.1146/annurev.arplant.59.103006.093219
  • Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 2005; 17:1467-81; PMID:15829606; http://dx.doi.org/10.1105/tpc.104.030155
  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL. Plant cuticular lipid export requires an ABC Transporter. Science 2004; 306:702-4; PMID:15499022; http://dx.doi.org/10.1126/science.1102331
  • Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Höfer R, Schreiber L, Chory J, Aharoni A. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 2007; 145:1345-60; PMID:17951461; http://dx.doi.org/10.1104/pp.107.105676
  • Trenkamp S, Martin W, Tietjen K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Nati Acad Sci USA 2004; 101:11903-8; http://dx.doi.org/10.1073/pnas.0404600101
  • Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M. Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS Biol 2013; 11:e1001531; PMID:23585732; http://dx.doi.org/10.1371/journal.pbio.1001531
  • Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 2005; 139:1649-65; PMID:16299169; http://dx.doi.org/10.1104/pp.105.070805
  • del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ 2014; 37:2722-37; PMID:24716850; http://dx.doi.org/10.1111/pce.12344
  • Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 2013; 64:1755-67; PMID:23404903; http://dx.doi.org/10.1093/jxb/ert040
  • Safi H, Saibi W, Alaoui MM, Hmyene A, Masmoudi K, Hanin M, Brini F. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiol Biochem 2015; 89:64-75; PMID:25703105; http://dx.doi.org/10.1016/j.plaphy.2015.02.008
  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 2002; 419:399-403; PMID:12353036; http://dx.doi.org/10.1038/nature00962
  • Blein JP, Coutos-Thévenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 2002; 7:293-6; PMID:12119165; http://dx.doi.org/10.1016/S1360-1385(02)02284-7
  • McLaughlin JE, Bin-Umer MA, Widiez T, Finn D, McCormick S, Tumer NE. A lipid transfer protein increases the glutathione content and enhances Arabidopsis resistance to a Trichothecene Mycotoxin. PLoS One 2015; 10:e0130204; PMID:26057253; http://dx.doi.org/10.1371/journal.pone.0130204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.