3,236
Views
57
CrossRef citations to date
0
Altmetric
Mini-Review

GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth

, , , &
Article: e1152438 | Received 14 Dec 2015, Accepted 05 Feb 2016, Published online: 13 Apr 2016

References

  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175:720-31; PMID:4333397; http://dx.doi.org/10.1126/science.175.4023.720
  • Lingwood D, Kaiser HJ, Levental I, Simons K. Lipid rafts as functional heterogeneity in cell membranes. Biochem Soc Trans 2009; 37:955-60; PMID:19754431; http://dx.doi.org/10.1042/BST0370955
  • Mongrand S, Stanislas T, Bayer EM, Lherminier J, Simon-Plas F. Membrane rafts in plant cells. Trends Plant Sci 2010; 15:656-63; PMID:20934367; http://dx.doi.org/10.1016/j.tplants.2010.09.003
  • Muthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom Rev 2010; 29:425-79; PMID:19609886; http://dx.doi.org/10.1002/mas.20253
  • Markham JE, Li J, Cahoon EB, Jaworski JG. Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 2006; 281:22684-94; PMID:16772288; http://dx.doi.org/10.1074/jbc.M604050200
  • Carter HE, Gigg RH, Law JH, Nakayama T, Weber E. Biochemistry of the sphingolipides. XI. Structure of phytoglycolipide. J Biol Chem 1958; 233:1309-14; PMID:13610833
  • Carter HE, Kisic A. Countercurrent distribution of inosol lipids of plant seeds. J Lipid Res 1969; 10:356-62; PMID:4307829
  • Carter HE, Koob JL. Sphingolipids in bean leaves (Phaseolus vulgaris). J Lipid Res 1969; 10:363-9; PMID:5797522
  • Bure C, Cacas JL, Mongrand S, Schmitter JM. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal Bioanal Chem 2014; 406:995-1010; PMID:23887274; http://dx.doi.org/10.1007/s00216-013-7130-8
  • Hsieh TC, Kaul K, Laine RA, Lester RL. Structure of a major glycophosphoceramide from tobacco leaves, PSL-I: 2-deoxy-2-acetamido-D-glucopyranosyl(alpha1 leads to 4)-D-glucuronopyranosyl(alpha1 leads to 2)myoinositol-1-O-phosphoceramide. Biochemistry 1978; 17:3575-81; PMID:210797; http://dx.doi.org/10.1021/bi00610a024
  • Hsieh TC, Lester RL, Laine RA. Glycophosphoceramides from plants. Purification and characterization of a novel tetrasaccharide derived from tobacco leaf glycolipids. J Biol Chem 1981; 256:7747-55; PMID:7263625
  • Laine RA, Hsieh TC. Inositol-containing sphingolipids. Methods Enzymol 1987; 138:186-95; PMID:3600321; http://dx.doi.org/10.1016/0076-6879(87)38015-2
  • Spassieva S. HJ. Plant Sphingolipids Today - Are They Still Enigmatic? Plant Biology 2008; 5:125-36; http://dx.doi.org/10.1055/s-2003-40726
  • Kaul K, Lester RL. Characterization of Inositol-containing Phosphosphingolipids from Tobacco Leaves: Isolation and Identification of Two Novel, Major Lipids: N-Acetylglucosamidoglucuronidoinositol Phosphorylceramide and Glucosamidoglucuronidoinositol Phosphorylceramide. Plant Physiol 1975; 55:120-9; PMID:16659016; http://dx.doi.org/10.1104/pp.55.1.120
  • Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE, Cahoon EB. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. Phytochemistry 2015; 115:121-9; PMID:25794895; http://dx.doi.org/10.1016/j.phytochem.2015.02.019
  • Cacas JL, Bure C, Grosjean K, Gerbeau-Pissot P, Lherminier J, Rombouts Y, Maes E, Bossard C, Gronnier J, Furt F, et al. Re-Visiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids. Plant Physiol 2015; PMID:26518342; http://dx.doi.org/10.1104/pp.15.00564
  • Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518; PMID:24692354; http://dx.doi.org/10.1152/physrev.00033.2013
  • Furt F, Konig S, Bessoule JJ, Sargueil F, Zallot R, Stanislas T, Noirot E, Lherminier J, Simon-Plas F, Heilmann I, et al. Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol 2010; 152:2173-87; PMID:20181756; http://dx.doi.org/10.1104/pp.109.149823
  • Bure C, Cacas JL, Wang F, Gaudin K, Domergue F, Mongrand S, Schmitter JM. Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry. Rapid Commun Mass spectrom 2011; 25:3131-45; PMID:21953969; http://dx.doi.org/10.1002/rcm.5206
  • Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P. Differential effect of plant lipids on membrane organization: hot features and specificities of phytosphingolipids and phytosterols. J Biol Chem 2015; PMID:25575593; http://dx.doi.org/10.1104/pp.15.00564
  • Garner AE, Smith DA, Hooper NM. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Molecular membrane biology 2007; 24:233-42; PMID:17520480; http://dx.doi.org/10.1080/09687860601127770
  • Martiniere A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SE, Mongrand S, Maurel C, et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012; 109:12805-10; PMID:22689944; http://dx.doi.org/10.1073/pnas.1202040109
  • Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant SD, Panda A, et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 2015; 161:581-94; PMID:25910209; http://dx.doi.org/10.1016/j.cell.2015.03.048
  • Voxeur A, Fry SC. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant J 2014; 79:139-49; PMID:24804932; http://dx.doi.org/10.1111/tpj.12547
  • Morita N, Nakazato H, Okuyama H, Kim Y, Thompson GA, Jr. Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza. Biochimica et biophysica acta 1996; 1290:53-62; PMID:8645707; http://dx.doi.org/10.1016/0304-4165(95)00185-9
  • Oxley D, Bacic A. Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci U S A 1999; 96:14246-51; PMID:10588691; http://dx.doi.org/10.1073/pnas.96.25.14246
  • Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci 2012; 3:68; PMID:22639658; http://dx.doi.org/10.3389/fpls.2012.00068
  • Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, et al. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 2008; 20:3163-79; PMID:19001565; http://dx.doi.org/10.1105/tpc.108.060053
  • Smith CK, Fry SC. Biosynthetic origin and longevity in vivo of alpha-d-mannopyranosyl-(1 –> 4)-alpha-d-glucuronopyranosyl-(1 –> 2)-myo-inositol, an unusual extracellular oligosaccharide produced by cultured rose cells. Planta 1999; 210:150-6; PMID:10592043; http://dx.doi.org/10.1007/s004250050664
  • Tanaka T, Kida T, Imai H, Morishige J, Yamashita R, Matsuoka H, Uozumi S, Satouchi K, Nagano M, Tokumura A. Identification of a sphingolipid-specific phospholipase D activity associated with the generation of phytoceramide-1-phosphate in cabbage leaves. FEBS J 2013; 280:3797-809; PMID:23738625; http://dx.doi.org/10.1111/febs.12374
  • Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. Adv Exp Med Biol 2010; 688:165-84; PMID:20919654; http://dx.doi.org/10.1007/978-1-4419-6741-1_12
  • Koberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, Gavin AC, Superti-Furga G. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell 2015; 162:170-83; PMID:26095250; http://dx.doi.org/10.1016/j.cell.2015.05.051
  • Cacas JL, Bure C, Furt F, Maalouf JP, Badoc A, Cluzet S, et al. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity. Phytochemistry 2013; 96:191-200; PMID:23993446; http://dx.doi.org/10.1016/j.phytochem.2013.08.002
  • Ingolfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ. Lipid organization of the plasma membrane. J Am Chem Soc 2014; 136:14554-9; PMID:25229711; http://dx.doi.org/10.1021/ja507832e
  • Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, et al. Identification of a sphingolipid alpha-glucuronosyltransferase that is essential for pollen function in Arabidopsis. The Plant cell 2014; 26:3314-25; PMID:25122154; http://dx.doi.org/10.1105/tpc.114.129171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.