1,689
Views
35
CrossRef citations to date
0
Altmetric
Article Addendum

How microRNA172 affects fruit growth in different species is dependent on fruit type

, , &
Article: e1156833 | Received 05 Feb 2016, Accepted 15 Feb 2016, Published online: 29 Feb 2016

References

  • Ripoll JJ, Bailey LJ, Mai QA, Wu SL, Hon CT, Chapman EJ, et al. microRNA regulation of fruit growth. Nat Plants 2015; 1; http://dx.doi.org/10.1038/nplants.2015.36
  • Xia R, Zhu H, An YQ, Beers EP, Liu ZR. Apple miRNAs and tasiRNAs with novel regulatory networks. Gen Biol 2012; 13:R47; http://dx.doi.org/10.1186/gb-2012-13-6-r47
  • Yao JL, Xu J, Cornille A, Tomes S, Karunairetnam S, Luo Z, Bassett H, Whitworth C, Rees-George J, Ranatunga C, et al. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant J 2015; 84:417-27; PMID:26358530; http://dx.doi.org/10.1111/tpj.13021
  • Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot 2011; 62:487-95; PMID:20952628; http://dx.doi.org/10.1093/jxb/erq295
  • Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA. Overexpression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 2009; 9:149; PMID:20017947; http://dx.doi.org/10.1186/1471-2229-9-149
  • Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 2004; 303:2022-5; PMID:12893888; http://dx.doi.org/10.1126/science.1088060
  • Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 2003; 15:2730-41; PMID:14555699; http://dx.doi.org/10.1105/tpc.016238
  • Tang M, Li G, Chen M. The phylogeny and expression pattern of APETALA2-like genes in rice. J Genet Genom 2007; 34:930-8; http://dx.doi.org/10.1016/S1673-8527(07)60104-0
  • Okamuro JK, Caster B, Villarroel R, VanMontagu M, Jofuku KD. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 1997; 94:7076-81; PMID:9192694; http://dx.doi.org/10.1073/pnas.94.13.7076
  • Teotia S, Tang G. To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 2015; 8:359-77; PMID:25737467; http://dx.doi.org/10.1016/j.molp.2014.12.018
  • Mlotshwa S, Yang Z, Kim Y, Chen X. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol 2006; 61:781-93; PMID:16897492; http://dx.doi.org/10.1007/s11103-006-0049-0
  • Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 2010; 22:2156-70; PMID:20675573; http://dx.doi.org/10.1105/tpc.110.075606
  • Jofuku KD, Omidyar PK, Gee Z, Okamuro JK. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 2005; 102:3117-22; PMID:15708974; http://dx.doi.org/10.1073/pnas.0409893102
  • Pratt C. Apple flower and fruit: morphology and anatomy. Hort Rev 1988; 10:273-308
  • Yao JL, Dong YH, Morris BA. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 2001; 98:1306-11; PMID:11158635; http://dx.doi.org/10.1073/pnas.98.3.1306
  • Weigel D, Meyerowitz EM. The ABCs of floral homeotic genes. Cell 1994; 78:203-9; PMID:7913881; http://dx.doi.org/10.1016/0092-8674(94)90291-7
  • Gleave AP, Ampomah-Dwamena C, Berthold S, Supinya D, Karunairetnam S, Bhawana N, et al. Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genet Genom 2008; 4:343-58; http://dx.doi.org/10.1007/s11295-007-0113-1
  • McCormick S. Transformation of tomato with Agrobacterium tumefaciens. Plant Tiss Cult Manual B6. The Netherlands: Kluwer, 1991:1-9
  • Correa J, Ravest G, Laborie D, Mamani M, Torres E, Munoz C, et al. Quantitative trait loci for the response to gibberellic acid of berry size and seed mass in tablegrape (Vitis vinifera L.). Austr J Grape Wine Res 2015; 21:496-507; http://dx.doi.org/10.1111/ajgw.12141
  • Spjut RW. A systematic treatment of fruit types. Memoirs New York Botanical Garden 1994; 70:1-182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.