1,550
Views
19
CrossRef citations to date
0
Altmetric
Short Communication

DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula

, , &
Article: e1162369 | Received 17 Feb 2016, Accepted 01 Mar 2016, Published online: 16 Mar 2016

References

  • Smith SE, Read DJ. Mycorrhizal Symbiosis. San Diego, CA: Academic Press, Inc., 2008
  • Harrison MJ. Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 2012; 15:691-8; PMID:23036821; http://dx.doi.org/10.1016/j.pbi.2012.08.010
  • Floss DS, Levy JG, Levesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 2013; 110:E5025-34; PMID:24297892; http://dx.doi.org/10.1073/pnas.1308973110
  • Park H, Floss DS, Levesque-Tremblay V, Bravo A, Harrison M J. Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza 1. Plant Physiol 2015; 169:1-15; PMID:26342109; http://dx.doi.org/10.1104/pp.15.01242
  • Oldroyd GED. Speak, friend, and enter:signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252-63; PMID:23493145; http://dx.doi.org/10.1038/nrmicro2990
  • Gutjahr C, Parniske M. Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. In: Schekman R, ed. Annual Review of Cell and Developmental Biol, 2013; 29:593-617.
  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H. Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread. Plant Physiol 2011; 157:2023-43; PMID:22034628; http://dx.doi.org/10.1104/pp.111.186635
  • Camps C, Jardinaud MF, Rengel D, Carrere S, Herve C, Debelle F, Gamas P, Bensmihen S, Gough C. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. New Phytol 2015; 208:224-40; PMID:25919491; http://dx.doi.org/10.1111/nph.13427
  • Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, et al. A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Curr Biol 2012; 22:2236-41; PMID:23122845; http://dx.doi.org/10.1016/j.cub.2012.09.044
  • Xue L, Cui H, Buer B, Vijayakumar V, Delaux P-M, Junkermann S, Bucher M. Network of GRAS Transcription Factors Involved in the Control of Arbuscule Development in Lotus japonicus. Plant Physiol 2015; 167:854-71; PMID:25560877; http://dx.doi.org/10.1104/pp.114.255430
  • Rich M, Schorderet M, Bapaume L, Falquet L, Morel P, Vandenbussche M, Reinhardt D. A Petunia GRAS transcription factor controls symbiotic gene expression and fungal morphogenesis in arbuscular mycorrhiza. Plant Physiol 2015; 168(3):788-97; PMID:25971550; http://dx.doi.org/10.1104/pp.15.00310
  • El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S. First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 1996; 385:189-92; PMID:8647248; http://dx.doi.org/10.1016/0014-5793(96)00379-1
  • Gomez SK, Javot H, Deewatthanawong P, Torrez-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 2009; 9:1-19; PMID:19123941; http://dx.doi.org/10.1186/1471-2229-9-10
  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 2009; 182:200-12; PMID:19192192; http://dx.doi.org/10.1111/j.1469-8137.2008.02725.x
  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact 2004; 17:1063-77; PMID:15497399; http://dx.doi.org/10.1094/MPMI.2004.17.10.1063
  • Ortu G, Balestrini R, Pereira PA, Becker JD, Kuester H, Bonfante P. Plant Genes Related to Gibberellin Biosynthesis and Signaling Are Differentially Regulated during the Early Stages of AM Fungal Interactions. Mol Plant 2012; 5:951-4; PMID:22451647; http://dx.doi.org/10.1093/mp/sss027
  • Garrido JMG, Morcillo RJL, Rodriguez JAM, Bole JAO. Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant-Microbe Interact 2010; 23:651-64; PMID:20367473; http://dx.doi.org/10.1094/MPMI-23-5-0651
  • Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus. Plant Physiol 2015; 167:545-U442; PMID:25527715; http://dx.doi.org/10.1104/pp.114.247700
  • Shaul-Keinan O, Gadkar V, Ginzbert I, Grünzweig J, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Artzmon N, et al. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomu intraradices. New Phytol 2002; 154:501-7; http://dx.doi.org/10.1046/j.1469-8137.2002.00388.x
  • Harberd NP. Botany: Relieving DELLA restraint. Science 2003; 299:1853-4; PMID:12649470; http://dx.doi.org/10.1126/science.1083217
  • Sun TP. Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiol 2010; 154:567-70; PMID:20921186; http://dx.doi.org/10.1104/pp.110.161554
  • Daviere JM, Achard P. Gibberellin signaling in plants. Development 2013; 140:1147-51; PMID:23444347; http://dx.doi.org/10.1242/dev.087650
  • Foo E, Ross JJ, Jones WT, Reid JB. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 2013; 111(5):769-79; PMID:23508650; http://dx.doi.org/10.1093/aob/mct041
  • Yu N, Luo D, Zhang X, Liu J, Wang W, Jin Y, Dong W, Liu J, Liu H, Yang W, et al. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 2014; 24:130-3; PMID:24343576; http://dx.doi.org/10.1038/cr.2013.167
  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 2005; 137:1283-301; PMID:15778460; http://dx.doi.org/10.1104/pp.104.056572
  • Liu J, Blaylock L, Endre G, Cho J, Town CD, VandenBosch K, Harrison MJ. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 2003; 15:2106-23; PMID:12953114; http://dx.doi.org/10.1105/tpc.014183
  • Rech SS, Heidt S, Requena N. A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula. Plant J 2013; 75:711-25; PMID:23662629; http://dx.doi.org/10.1111/tpj.12242
  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 2010; 61:482-94; PMID:19912567; http://dx.doi.org/10.1111/j.1365-313X.2009.04072.x
  • Murray JD, Muni RRD, Torres-Jerez I, Tang YH, Allen S, Andriankaja M, Li GM, Laxmi A, Cheng XF, Wen JQ, et al. Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 2011; 65:244-52; PMID:21223389; http://dx.doi.org/10.1111/j.1365-313X.2010.04415.x
  • Feddermann N, Muni RRD, Zeier T, Stuurman J, Ercolin F, Schorderet M, Reinhardt D. The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant J 2010; 64:470-81; PMID:20804456; http://dx.doi.org/10.1111/j.1365-313X.2010.04341.x
  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, et al. Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2. Plant Cell 2011; 23:3853-65; PMID:22039214; http://dx.doi.org/10.1105/tpc.111.089771
  • Harrison MJ, Dewbre GR, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 2002; 14:2413-29; PMID:12368495; http://dx.doi.org/10.1105/tpc.004861
  • Zhang XC, Pumplin N, Ivanov S, Harrison MJ. EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Curr Biol 2015; 25:2189-95; PMID:26234213; http://dx.doi.org/10.1016/j.cub.2015.06.075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.