892
Views
6
CrossRef citations to date
0
Altmetric
Short Communication

NADPH oxidases in the arbuscular mycorrhizal symbiosis

, , , , &
Article: e1165379 | Received 12 Feb 2016, Accepted 08 Mar 2016, Published online: 28 Mar 2016

References

  • Lanfranco L, Young P. Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Curr Opin Plant Biol 2012; 15:454-61; PMID:22673109; http://dx.doi.org/10.1016/j.pbi.2012.04.003
  • van der Heijden MGA, Martin F, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: The past, the present and the future. New Phytol 2015; 205:1406-23; PMID:25639293; http://dx.doi.org/10.1111/nph.13288
  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010; 20:519-30; PMID:20697748; http://dx.doi.org/10.1007/s00572-010-0333-3
  • Genre A, Russo G. Does a common pathway transduce symbiotic signals in plant-microbe interactions? Front Plant Sci 2016; 7:96; PMID:26909085; http://dx.doi.org/10.3389/fpls.2016.00096
  • Walder F, van der Heijden M. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants 2015; 1:15159
  • Kloppholz S, Kuhn H, Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotroph. Curr Biol 2011; 21:1-6; PMID:21129968; http://dx.doi.org/10.1016/j.cub.2011.06.044
  • Sedzielewska-Toro K, Delaux PM. Mycorrhizal symbioses: today and tomorrow. New Phytol 2016; 209:917-20; PMID:26756534; http://dx.doi.org/10.1111/nph.13820
  • Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot 2014; 65:1229-40; PMID:24253197; http://dx.doi.org/10.1093/jxb/ert375
  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 2011; 14:691-9; PMID:21862390; http://dx.doi.org/10.1016/j.pbi.2011.07.014
  • Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci 2012; 17:9-15; PMID:22037416; http://dx.doi.org/10.1016/j.tplants.2011.10.001
  • Scheler C, Durner J, Astier J. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 2013; 16:534-9; PMID:23880111; http://dx.doi.org/10.1016/j.pbi.2013.06.020
  • Torres MA. ROS in biotic interactions. Physiol Plant 2010; 138:414-29; PMID:20002601; http://dx.doi.org/10.1111/j.1399-3054.2009.01326.x
  • Lehmann S, Mario Serrano M, L'Haridon F, Tjamos SE, Metraux J-P. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 2015; 112:54-62; PMID:25264341; http://dx.doi.org/10.1016/j.phytochem.2014.08.027
  • Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sanchez F, Quinto C. 2012. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. Plant Cell Physiol 2012; 53:1751-67; PMID:22942250; http://dx.doi.org/10.1093/pcp/pcs120
  • Marino D, Andrio E, Danchin EGJ, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol 2011; 189:580-92; PMID:21155825; http://dx.doi.org/10.1111/j.1469-8137.2010.03509.x
  • Puppo A, Pauly N, Boscari A, Manodn K, Brouquisse R. Hydrogen peroxide and nitric oxide: key regulators of the legume-Rhizobium and mycorrhizal symbiosis. Antioxid Redox Sign 2013; 18:1-18; PMID:23249379; http://dx.doi.org/10.1089/ars.2012.4980
  • Salzer P, Corbiere H, Boller T. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 1999; 208:319-25; http://dx.doi.org/10.1007/s004250050565
  • Fester T, Hause G. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 2005; 15:373-9; PMID:15875223; http://dx.doi.org/10.1007/s00572-005-0363-4
  • Lanfranco L, Novero M, and Bonfante P. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 2005; 137:1319-30; PMID:15749992; http://dx.doi.org/10.1104/pp.104.050435
  • Benabdellah K, Azcon-Aguilar C, Valderas A, Speziga D, Fitzpatrick TB, and Ferrol N. GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 2009; 184:682-93; PMID:19674326; http://dx.doi.org/10.1111/j.1469-8137.2009.02978.x
  • Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Luisa Lanfranco L. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta 2016; 243:251-62; PMID:26403286; http://dx.doi.org/10.1007/s00425-015-2407-0
  • Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 2015; 112:22-32; PMID:Can't; http://dx.doi.org/10.1016/j.phytochem.2014.09.016
  • Arthikala M-K, Montiel J, Nava N, Santana O, Sánchez-López R, Cárdenas L, Quinto C. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant Cell Physiol 2013; 54:1391-402; PMID:23788647; http://dx.doi.org/10.1093/pcp/pct089
  • Arthikala M-K, Sánchez-López R, Nava N, Santana O, Cárdenas L, Quinto C. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytol 2014; 202:886-900; PMID:24571730; http://dx.doi.org/10.1111/nph.12714
  • Tudzynski P, Heller J, Siegmund U. Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 2012; 15:653-9; PMID:23123514; http://dx.doi.org/10.1016/j.mib.2012.10.002
  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 2006; 18:1052-66; PMID:16517760; http://dx.doi.org/10.1105/tpc.105.039263
  • Tanaka A, Takemoto D, Hyon GS, Park P, and Scott B. NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloe festucae and perennial ryegrass. Mol Microbiol 2008; 68:1165-78; PMID:18399936; http://dx.doi.org/10.1111/j.1365-2958.2008.06217.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.