671
Views
1
CrossRef citations to date
0
Altmetric
Article Addendum

Properties of nitrogen fertilization are decisive in determining the effects of elevated atmospheric CO2 on the activity of nitrate reductase in plants

&
Article: e1165380 | Received 17 Feb 2016, Accepted 08 Mar 2016, Published online: 04 Apr 2016

References

  • IPCC. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2014.
  • Long SP, Ainsworth EA, Rogers A, Ort DR. Rising atmospheric carbon dioxide: plants FACE the future. Ann Rev Plant Biol 2004; 55:591-628; PMID:15377233; http://dx.doi.org/10.1146/annurev.arplant.55.031903.141610
  • Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 2005; 165:351-72; PMID:15720649; http://dx.doi.org/10.1111/j.1469-8137.2004.01224.x
  • Ainsworth EA. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentrations. Global Change Biol 2008; 14:1642-50; http://dx.doi.org/10.1111/j.1365-2486.2008.01594.x
  • Cheng SH, Moore BD, Seemann JR. Effects of short- and long-term elevated CO2 on the expression of ribulose-1, 5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant Physiol 1998; 116:715-23; PMID:9489018; http://dx.doi.org/10.1104/pp.116.2.715
  • Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 1999; 22:583-621; http://dx.doi.org/10.1046/j.1365-3040.1999.00386.x
  • Sun JD, Gibson KM, Kiirats O, Okita TW, Edwards GE. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol 2002; 130:1573-83; PMID:12428022; http://dx.doi.org/10.1104/pp.010058
  • Li PH, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ 2008; 31:1673-87; PMID:18721265; http://dx.doi.org/10.1111/j.1365-3040.2008.01874.x
  • Sanz-Sáez A, Erice G, Aranjuelo I, Nogués S, Irigoyen JJ, Sánchez-Díaz M. Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. J Plant Physiol 2010; 167:1558-65; PMID:20708820; http://dx.doi.org/10.1016/j.jplph.2010.06.015
  • Du ST, Zhang RR, Zhang P, Liu HJ, Yan MG, Chen N, Xie HQ, Ke SW. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. J Exp Bot 2016; 3:893-904; PMID:20708820; http://dx.doi.org/10.1093/jxb/erv506
  • Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. Rockville, MD: American Society of Plant Physiologists 2000; ISBN: 0-943088-39-9
  • Matt P, Geiger M, Liu PW, Engels C, Krapp A, Stitt M. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ 2001; 24:1119-37; http://dx.doi.org/10.1046/j.1365-3040.2001.00771.x
  • Niu YF, Cai RS, Dong HF, Wang H, Tang CX, Zhang YS. Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. J Exp Bot 2012; 64:355-67; PMID:23183255; http://dx.doi.org/10.1093/jxb/ers341
  • Alexandre A, Silva J, Buapet P, Bjork M, Santos R. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2012; 2(10):2625-2635; PMID:23145346; http://dx.doi.org/10.1002/ece3.333
  • Hofmann LC, Straub S, Bischof K. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. J Exp Bot 2013; 64:899-908; PMID:23314813; http://dx.doi.org/10.1093/jxb/ers369
  • Sailo N, Verma R, Pandey R, Jain V. Effect of elevated carbon dioxide on nitrogen assimilation and mobilization in wheat and rye genotypes of different ploidy levels. Indian J Plant Physiol 2013; 18:333-8; http://dx.doi.org/10.1007/s40502-013-0049-4
  • Cousins AB, Bloom AJ. Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.). Plant, Cell Environ 2003; 26:1525-30; http://dx.doi.org/10.1046/j.1365-3040.2003.01075.x
  • Sicher RC. Responses of nitrogen metabolism in N sufficient barley primary leaves to plant growth in elevated atmospheric carbon dioxide. Photosynth Res 2001; 68:193-201; PMID:16228342; http://dx.doi.org/10.1023/A:1012951708207
  • Natali SM, Sañudo-Wilhelmy SA, Lerdau MT. Effects of elevated carbon dioxide and nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two temperate forests. Plant Soil 2009; 314(1):197-210; http://dx.doi.org/10.1007/s11104-008-9718-x
  • Wang L, Pedas P, Eriksson D, Schjoerring JK. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants. J Exp Bot 2013; 10(64):2713-24; PMID:23740933; http://dx.doi.org/10.1093/jxb/ert117
  • Bauer GA, Berntson GM. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiol 2001; 21:137-44; PMID:11303644; http://dx.doi.org/10.1093/treephys/21.2-3.137
  • Lekshmy S, Jain V, Khetarpal S, Pandey R. Inhibition of nitrate uptake and assimilation in wheat seedlings grown under elevated CO2. Indian J Plant Physiol 2013; 18:23-9; http://dx.doi.org/10.1007/s40502-013-0010-6
  • Geiger M, Liu PW, Engels C, Harnecker J, Schulze ED, Ludewig F, Sonnewald U, Scheible WR, Stitt M. Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant Cell Environ 1998; 21:253-68; http://dx.doi.org/10.1046/j.1365-3040.1998.00277.x
  • Larios B, Agüera E, de la Haba P, Pérez-Vicente Maldonado JM. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 2001; 212:305-12; PMID:11216852; http://dx.doi.org/10.1007/s004250000395
  • Robredo A, Pérez-López U, Miranda-Apodaca J, Lacuesta M. Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ Exp Bot 2011; 71:399-408; http://dx.doi.org/10.1016/j.envexpbot.2011.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.