1,013
Views
10
CrossRef citations to date
0
Altmetric
Article Addendum

Tracking ancestral lineages and recent expansions of NBS-LRR genes in angiosperms

, &
Article: e1197470 | Received 18 May 2016, Accepted 27 May 2016, Published online: 27 Jun 2016

References

  • DeYoung BJ, Innes RW. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 2006; 7:1243-9; PMID:17110940; http://dx.doi.org/10.1038/ni1410
  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003; 15:809-34; PMID:12671079; http://dx.doi.org/10.1105/tpc.009308
  • Shao ZQ, Zhang YM, Wang B, Chen JQ. Computational identification of microRNA-targeted nucleotide-binding site-leucine-rich repeat genes in plants. Bio-protocol 2015; 5.
  • Lin X, Zhang Y, Kuang H, Chen J. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genomics 2013; 14:335; PMID:23682795; http://dx.doi.org/10.1186/1471-2164-14-335
  • Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, Wu P, Wu XY, Wu XZ, Wang Q, Wang B, et al. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol 2014; 166:217-34; PMID:25052854; http://dx.doi.org/10.1104/pp.114.243626
  • Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, et al. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 2016; 170:15; http://dx.doi.org/10.1104/pp.15.01487
  • Zhang YM, Shao ZQ, Wang Q, Hang YY, Xue JY, Wang B, Chen JQ. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J Integr Plant Biol 2016; 58:13; PMID:25926337; http://dx.doi.org/10.1111/jipb.12365
  • Wei C, Chen J, Kuang H. Dramatic number variation of R genes in Solanaceae species accounted for by a few R gene subfamilies. PLoS One 2016; 11:e0148708; PMID:26849045; http://dx.doi.org/10.1371/journal.pone.0148708
  • Wu P, Shao ZQ, Wu XZ, Wang Q, Wang B, Chen JQ, Hang YY, Xue JY. Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa. Gene 2014; 540:54-61; PMID:24576745; http://dx.doi.org/10.1016/j.gene.2014.01.082
  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 1999; 20:317-32; PMID:10571892; http://dx.doi.org/10.1046/j.1365-313X.1999.00606.x
  • Cannon SB, Zhu HY, Baumgarten AM, Spangler R, May G, Cook DR, Young ND. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 2002; 54:548-62; PMID:11956693; http://dx.doi.org/10.1007/s0023901-0057-2
  • Collier SM, Hamel LP, Moffett P. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant Microbe Interact 2011; 24:918-31; PMID:21501087; http://dx.doi.org/10.1094/MPMI-03-11-0050
  • Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 2011; 108:16463-8; PMID:21911370; http://dx.doi.org/10.1073/pnas.1113726108
  • Ma LJ, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K. Fusarium pathogenomics. Annu Rev Microbiol 2013; 67:399-416; PMID:24024636; http://dx.doi.org/10.1146/annurev-micro-092412-155650
  • Slippers B, Boissin E, Phillips AJ, Groenewald JZ, Lombard L, Wingfield MJ, Postma A, Burgess T, Crous PW. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud Mycol 2013; 76:31-49; PMID:24302789; http://dx.doi.org/10.3114/sim0020
  • Blonder B, Royer DL, Johnson KR, Miller I, Enquist BJ. Plant ecological strategies shift across the Cretaceous-Paleogene boundary. PLoS Biol 2014; 12:e1001949; PMID:25225914; http://dx.doi.org/10.1371/journal.pbio.1001949
  • Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 2015; 32:835-45; PMID:25739733; http://dx.doi.org/10.1093/molbev/msv037
  • Meyers BC, Kaushik S, Nandety RS. Evolving disease resistance genes. Curr Opin Plant Biol 2005; 8:129-34; PMID:15752991; http://dx.doi.org/10.1016/j.pbi.2005.01.002
  • Mackey D, Holt BF, 3rd, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 2002; 108:743-54; PMID:11955429; http://dx.doi.org/10.1016/S0092-8674(02)00661-X
  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ. RPS2 of Arabid opsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 1994; 265:1856-60; PMID:8091210; http://dx.doi.org/10.1126/science.8091210
  • Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 2003; 301:1230-3; PMID:12947197; http://dx.doi.org/10.1126/science.1085671

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.