2,074
Views
13
CrossRef citations to date
0
Altmetric
Short Communication

Photoperiod response and floral transition in sorghum

&
Article: e1261232 | Received 02 Nov 2016, Accepted 11 Nov 2016, Published online: 17 Nov 2016

References

  • Quinby J, Karper R. The inheritance of three genes that influence time of floral initiation and maturity date in milo. Agron J 1945; 37:916-36; http://dx.doi.org/10.2134/agronj1945.00021962003700110006x
  • Amasino R. Seasonal and developmental timing of flowering. Plant J 2010; 61:1001-13; PMID:20409274; http://dx.doi.org/10.1111/j.1365-313X.2010.04148.x
  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 2015; 66:441-64; PMID:25534513; http://dx.doi.org/10.1146/annurev-arplant-043014-115555
  • Itoh H, Nonoue Y, Yano M, Izawa T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 2010; 42:635-8; PMID:20543848; http://dx.doi.org/10.1038/ng.606
  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 2004; 18:926-36; PMID:15078816; http://dx.doi.org/10.1101/gad.1189604
  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 2008; 40:761-7; PMID:18454147; http://dx.doi.org/10.1038/ng.143
  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 2004; 303:1640-4; PMID:15016992; http://dx.doi.org/10.1126/science.1094305
  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 2000; 12:2473-83; PMID:11148291; http://dx.doi.org/10.1105/tpc.12.12.2473
  • Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995; 80:847-57; PMID:7697715; http://dx.doi.org/10.1016/0092-8674(95)90288-0
  • Nemoto Y, Nonoue Y, Yano M, Izawa T. Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J 2016; 86:221-33; PMID:26991872; http://dx.doi.org/10.1111/tpj.13168
  • Yang S, Murphy R, Morishige D, Klein P, Rooney W. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 2014; 9:e105352; PMID:25122453; http://dx.doi.org/10.1371/journal.pone.0105352
  • Murphy R., et al. Ghd7 (Ma6) represses flowering in long days: a key trait in energy sorghum hybrids. PLoS One 2014; 9:e105352; PMID:25122453; http://dx.doi.org/10.1371/journal.pone.0105352
  • Zhang D, Kong W, Robertson J, Goff VH, Epps E, Kerr A, Mills G, Cromwell J, Lugin Y, Phillips C,, et al. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC Plant Biol 2015; 15:107; PMID:25896918; http://dx.doi.org/10.1186/s12870-015-0477-6
  • Zhang D, Guo H, Kim C, Lee TH, Li J, Robertson J, Wang X, Wang Z, Paterson AH. CSGRqtl, a comparative quantitative trait locus database for saccharinae grasses. Plant Physiol 2013; 161:594-9; PMID:23370713; http://dx.doi.org/10.1104/pp.112.206870
  • Quinby J. The genetic control of flowering and growth in sorghum. Adv Agron 1973; 25:125-62; http://dx.doi.org/10.1016/S0065-2113(08)60780-4
  • Vanderlip RL, Reeves HE. Growth stages of sorghum. Agronomy J 1972; 64:13-17; http://dx.doi.org/10.2134/agronj1972.00021962006400010005x
  • Quinby J. Fourth maturity gene locus in sorghum. Crop Sci 1966; 6:516-8; http://dx.doi.org/10.2135/cropsci1966.0011183X000600060005x
  • Murphy R, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 2011; 108:16469-74; PMID:21930910; http://dx.doi.org/10.1073/pnas.1106212108
  • Turner A, Beales J, Faure S, Dunford R, Laurie D. The pseudoresponse regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 2005; 310:1031-4; PMID:16284181; http://dx.doi.org/10.1126/science.1117619
  • Cuevas HE, Zhou C, Tang H, Khadke PP, Das S, Lin YR, Ge Z, Clemente T, Upadhyaya HD, Hash CT, et al. The evolution of photoperiod-insensitive flowering in sorghum, a genomic model for panicoid grasses. Mol Biol Evol 2016; 33:2417-28; PMID:27335143; http://dx.doi.org/10.1093/molbev/msw120
  • Childs K, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 1997; 113:611-9; PMID:9046599; http://dx.doi.org/10.1104/pp.113.2.611
  • Wolabu TW, Zhang F, Niu L, Kalve S, Bhatnagar-Mathur P, Muszynski MG, Tadege M. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol 2016; 210:946-59; PMID:26765652; http://dx.doi.org/10.1111/nph.13834
  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005; 309:1052-6; PMID:16099979; http://dx.doi.org/10.1126/science.1115983
  • Taoka K, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 2011; 476:332-7; PMID:21804566; http://dx.doi.org/10.1038/nature10272
  • Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 2011; 23:3172-84; PMID:21890645; http://dx.doi.org/10.1105/tpc.111.088641

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.