3,025
Views
59
CrossRef citations to date
0
Altmetric
Research Paper

Drought stress responses in maize are diminished by Piriformospora indica

, , , , , , & show all
Article: e1414121 | Received 25 Oct 2017, Accepted 04 Dec 2017, Published online: 26 Dec 2017

References

  • Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci: CMLS. 2015;72:673–89. doi:10.1007/s00018-014-1767-0.
  • Lopes MS, Araus JL, van Heerden PD, Foyer CH. Enhancing drought tolerance in C(4) crops. J Exp Bot. 2011;62:3135–53. doi:10.1093/jxb/err105.
  • Sahay NS, Varma A. Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett. 1999;181:297–302 doi:10.1111/j.1574-6968.1999.tb08858.x.
  • Lou B, Sun C, Cai D. Piriformaspora indica with multiple functions and its application prospects. Acta Phytophylacica Sinica. 2007;34:653–6
  • Nautiyal C, Chauhan P, DasGupta S, Seem K, Varma A, Staddon W. Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L. J Microbiol Biotech. 2010;26:1393–99. doi:10.1007/s11274-010-0312-z.
  • Anith KN, Faseela KM, Archana PA, Prathapan KD. Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis. 2011;55:11–7. doi:10.1007/s13199-011-0143-1.
  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem. 2010;285:26532–44. doi:10.1074/jbc.M110.111021.
  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. The New Phytologist. 2008;180:501–10. doi:10.1111/j.1469-8137.2008.02583.x.
  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–91. doi:10.1073/pnas.0504423102.
  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–91. doi:10.1073/pnas.0504423102.
  • Sun C, Johnson J M, Cai D, Sherameti I, Oelmüller R, Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Plant Physiol. 2010;167:1009–17. doi:10.1016/j.jplph.2010.02.013.
  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8(10):e2689. doi:10.4161/psb.26891.
  • Fathi A, Tari D B. Effect of drought stress and its mechanism in plants. Int J Life Sci. 2016;10(1):1. doi:10.3126/ijls.v10i1.14509.
  • Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58 doi:10.1080/07352680590910410.
  • Valliyodan B, Nguyen HAT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9:189–95. doi:10.1016/j.pbi.2006.01.019.
  • Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608. doi:10.1093/jxb/err460.
  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58:221–7. doi:10.1093/jxb/erl164.
  • Tuteja N, Sopory SK. Chemical signaling under abiotic stress environment in plants. Plant Signal Behav. 2008;3:525–36 doi:10.4161/psb.3.8.6186.
  • Wolters H, Jurgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet. 2009;10:305–17. doi:10.1038/nrg2558.
  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005;10:88–94. doi:10.1016/j.tplants.2004.12.012.
  • de Ollas C, Hernando B, Arbona V, Gomez-Cadenas A. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plantarum. 2013;147:296–306. doi:10.1111/j.1399-3054.2012.01659.x.
  • Liu F, Xing S, Ma H, Du Z, Ma B, Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotech. 2013;97:9155–64. doi:10.1007/s00253-013-5193-2.
  • Farooq M, Hussain M, Wahid A, Siddique KHM. Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer Berlin Heidelberg, 2012; pp 1–33. doi:10.1007/978-3-642-32653-0_1
  • Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol and Biochem: PPB / Societe Francaise de Physiologie Vegetale 2014;82:209–17. doi:10.1016/j.plaphy.2014.06.008 doi:10.1016/j.plaphy.2014.06.008.
  • Tamiru M, Undan JR, Takagi H, Abe A, Yoshida K, Undan JQ, Natsume S, Uemura A, Saitoh H, Matsumura H, Urasaki N, Yokota T, Terauchi R. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Mol Biol. 2015;88:85–99. doi:10.1007/s11103-015-0310-5.
  • Sherameti I, Tripathi S, Varma A, Oelmuller R. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant-Microbe Interact: MPMI. 2008a;21:799–807. doi:10.1094/MPMI-21-6-0799.
  • Xu L, Wang A, Wang J, et al. Piriformospora indica confers drought tolerance on Zea mays L.through enhancement of antioxidant activity and expression of drought-related genes. Crop J. 2017;5:251–58. doi:10.1016/j.cj.2016.10.002.
  • Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol. 2004;55:807–23. doi:10.1007/s11103-005-1969-9.
  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell. 2001;13:2809–22. doi:10.1105/tpc.13.12.2809.
  • Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem. 2004;279:41758–66. doi:10.1074/jbc.M405259200 doi:10.1074/jbc.M405259200.
  • Breviario D, Gianì S, Morello L. Multiple tubulins: evolutionary aspects and biological implications. Plant Journal. 2013;75:202–18. doi:10.1111/tpj.12243.
  • Komis G, Luptovčiak I, Doskočilová A, Šamaj J. Biotechnological aspects of cytoskeletal regulation in plants. Biotech Advances. 2015;33:1043–1062. doi:10.1016/j.biotechadv.2015.03.008.
  • Ganguly A, Dixit R. Mechanisms for regulation of plant kinesins. Curr Opin Plant Biol. 2013;16:704–9. doi:10.1016/j.pbi.2013.09.003.
  • Nick P. Microtubules, signalling and abiotic stress. Plant J. 2013;75:309–23. doi:10.1111/tpj.12102.
  • Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES. Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in Sub-Saharan Africa. Crop Sci. 2016;56:1–14. doi:10.2135/cropsci2015.10.0632.
  • Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ. Balancing metabolites in drought: the sulfur assimilation conundrum. Trends Plant Sci. 2013;18:18–29. doi:10.1016/j.tplants.2012.07.005.
  • Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62 (3):869–82. doi:10.1093/jxb/erq340.
  • Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F. Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ. 2007;30:135–46. doi:10.1111/j.1365-3040.2006.01611.x.
  • Tardieu F, Reymond M, Hamard P, Granier C, Muller B. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J Exp Bot. 2000;51:1505–14. doi:10.1093/jexbot/51.350.1505.
  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteille M, Stitt M, Gibon Y, Muller B. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 2010;154:357–72. doi:10.1104/pp.110.157008.
  • McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 2011;155:1051–59. doi:10.1104/pp.110.170704.
  • Ernst L, Goodger JQ, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. J Exp Bot. 2010;61:3395–405. doi:10.1093/jxb/erq160.
  • Garber AJ, Karl IE, Kipnis DM. Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. J Biol Chem. 1976;251:836–43
  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants. 2017:23;249. doi:10.1007/s12298-017-0422-2.
  • Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology. 2011, 155:2–18. doi:10.1104/pp.110.167569.
  • Shearer HL, Cheng YT, Wang L, Liu J, Boyle P, Despres C, Zhang Y, Li X, Fobert PR. Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. Mol Plant-Microbe Interact MPMI. 2012;25:1459–68. doi:10.1094/MPMI-09-11-0256.
  • Ohri P, Bhardwaj R, Bali S, Kaur R, Jasrotia S, Khajuria A, Parihar RD. The common molecular players in plant hormone crosstalk and signaling. Curr Protein Pept Sci. 2015;16:369–88. doi:10.2174/1389203716666150330141922.
  • Rai M, Acharya D, Singh A, Varma A. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza. 2001;11:123–8. doi:10.1007/s005720100115.
  • Kumar M, Yadav V, Tuteja N, Johri AK. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology. 2009;155:780–90. doi:10.1099/mic.0.019869-0.
  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–70. doi:10.1093/nar/gkq310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.