1,514
Views
6
CrossRef citations to date
0
Altmetric
Mini-Review

Plant molecular responses to the elevated ambient temperatures expected under global climate change

, , , , , , & ORCID Icon show all
Article: e1414123 | Received 20 Nov 2017, Accepted 04 Dec 2017, Published online: 04 Jan 2018

References

  • Iba K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol. 2002;53:225–45. doi:10.1146/annurev.arplant.53.100201.160729.
  • Penfield S. Temperature perception and signal transduction in plants. New Phytol. 2008;179:615–28. doi:10.1111/j.1469-8137.2008.02478.x.
  • Ruelland E, Zachowski A. How plants sense temperature. Env Exp Bot. 2010;69:225–32. doi:10.1016/j.envexpbot.2010.05.011.
  • Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24. doi:10.1016/j.cell.2016.08.029.
  • Stocker F, Qin D, Plattner GK, Tignor M, Allen SK, Boshung A, et al. IPCC, 2013: Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Comp Geomet. 2013;18:95–123.
  • Fitter AH, Fitter RSR. Rapid changes in flowering time in British plants. Science. 2002;296:1689–91. doi:10.1126/science.1071617.
  • Du Y, Chen J, Willis CG, Zhou Z, Liu T, Dai W, Zhao Y, Ma K. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China. Ecol Evol. 2017;7:6747–57. doi:10.1002/ece3.3207.
  • Gao Q, Guo Y, Xu H, Ganjurjav H, Li Y, Wan Y, Qin X, Ma X, Liu S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci Total Environ. 2017;554–555:34–41.
  • Ma Z, Liu H, Mi Z, Zhang Z, Wang Y, Xu W, Jiang L, He JS. Climate warming reduces the temporal stability of plant community biomass production. Nat Commun. 2017;8:15378. doi:10.1038/ncomms15378.
  • Schneider JC, Hugly S, Somerville CR. Chilling-sensitive mutants of Arabidopsis. Plant Mol Biol Rep. 1995;13:11–7. doi:10.1007/BF02668388.
  • Hong S-W, Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA. 2000;97:4392–7. doi:10.1073/pnas.97.8.4392.
  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140:136–47. doi:10.1016/j.cell.2009.11.006.
  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol. 2009;19:408–13. doi:10.1016/j.cub.2009.01.046.
  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–91. doi:10.1016/j.cell.2008.01.047.
  • Chapman EJ, Greenham K, Castillejo C, Sartor R, Bialy A, Sun TP, Estelle M. Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One. 2012;7:e36210. doi:10.1371/journal.pone.0036210.
  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA. 2011;108:20231–5. doi:10.1073/pnas.1110682108.
  • Gray WM, Östin A, Sandberg G, Romano CP, Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA. 1998;95:7197–202. doi:10.1073/pnas.95.12.7197.
  • Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 2009;60:589–601. doi:10.1111/j.1365-313X.2009.03983.x.
  • Kim D-H, Doyle MR, Sung S, Amasino RM. Vernalization: Winter and the timing of flowering in plants. Ann Rev Cell Dev Biol. 2009;25:277–99. doi:10.1146/annurev.cellbio.042308.113411.
  • Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci USA. 2008;105:2214–9. doi:10.1073/pnas.0711453105.
  • Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J. 2015;83:133–48. doi:10.1111/tpj.12869.
  • Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D. A Genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science. 2009;323:1060–3. doi:10.1126/science.1164014.
  • Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484:242–5. doi:10.1038/nature10928.
  • Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5. doi:10.1126/science.aan2874.
  • Fang C, Li F, Pei J, Ren J, Gong Y, Yuan Z, et al. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agr Forest Meteo. 2017;248:449–57. doi:10.1016/j.agrformet.2017.10.032.
  • Walker JM. One-degree increments in soil temperatures affect maize seedling behavior. Soil Sci Soc Am J. 1969;33:729–36. doi:10.2136/sssaj1969.03615995003300050031x.
  • Radville L, McCormack ML, Post E, Eissenstat DM. Root phenology in a changing climate. J Exp Bot. 2016;67:3617–28. doi:10.1093/jxb/erw062.
  • Fei Q, Wei S, Zhou Z, Gao H, Li X. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis. Plant Cell Reports. 2017;36:1507–18. doi:10.1007/s00299-017-2171-7.
  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–76. doi:10.1016/j.cell.2008.01.049.
  • Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M. The transport inhibitor response2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol. 2009;151:168–79. doi:10.1104/pp.109.138859.
  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA. 2011;108:18512–7. doi:10.1073/pnas.1108434108.
  • Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–73. doi:10.1105/tpc.111.088047.
  • Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–9. doi:10.1101/gad.1415106.
  • Cheng Y, Dai X, Zhao Y. Auxin Synthesized by the YUCCA F0lavin Monooxygenases is essential for embryogenesis and leaf formation in arabidopsis. Plant Cell. 2007;19:2430–9. doi:10.1105/tpc.107.053009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.