5,098
Views
36
CrossRef citations to date
0
Altmetric
Review

Plant defense against virus diseases; growth hormones in highlights

ORCID Icon, , , &
Article: 1596719 | Received 04 Mar 2019, Accepted 12 Mar 2019, Published online: 08 Apr 2019

References

  • Islam W, Zhang J, Adnan M, Noman A, Zaynab M, Wu Z. Plant virus ecology: a glimpse of recent accomplishments. Appl Ecol Env Res. 2017;15:691–705. doi:10.15666/aeer/1501_691705.
  • Islam W, Zaynab M, Qasim M, Wu Z. Plant-virus interactions: disease resistance in focus. Hosts Virus. 2017;4:5–20. Internet.
  • Islam W. Genetic defense approaches against begomoviruses. J Appl Virol Internet. 2017;6:26. doi:10.21092/jav.v6i3.81.
  • Islam W, Qasim M, Noman A, Tayyab M, Chen S, Wang L. Management of Tobacco mosaic virus through natural metabolites. Rec Nat Prod Internet. 2018;12:403–415. doi:10.25135/rnp.
  • Kuhn M, Neumann S. Differenz und Ungleichheit im Kontext von Mehrsprachigkeit. Differenz - Ungleichheit - Erziehungswissenschaft Internet. 2017;13:275–294. http://link.springer.com/10.1007/978-3-658-10516-7_15.
  • Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol Biol. 2016;91:713–725. doi:10.1007/s11103-016-0452-0.
  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T. Autophagy in plants – what’s new on the menu? Trends Plant Sci. 2016;21:134–144. doi:10.1016/j.tplants.2015.10.008.
  • Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology. Plant Mol Biol. 2016;91:691–702. doi:10.1007/s11103-016-0477-4.
  • Bolgova LS, Yaroshuk TM. Histogenesis of lung cancer. Vopr Onkol. 2010;56:469–476.
  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguch S, Akimitsu K, Gomi K. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav. 2013;8:e24260. doi:10.4161/psb.24260.
  • Adie B, Chico JM, Rubio-Somoza I, Solano R. Modulation of plant defenses by ethylene. J Plant Growth Regul. 2007;26:160–177. doi:10.1007/s00344-007-0012-6.
  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang H-Q, Luan S, Li J, He Z-H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci Internet. 2013;110:15485–15490. doi:10.1073/pnas.1304651110.
  • Foo E, Ross JJ, Jones WT, Reid JB. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot. 2013;111:769–779. doi:10.1093/aob/mct041.
  • Ludwig-Müller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J Plant Physiol. 2015;172:4–12. doi:10.1016/j.jplph.2014.01.002.
  • Sauer M, Robert S, Kleine-Vehn J. Auxin: simply complicated. J Exp Bot. 2013;64:2565–2577. doi:10.1093/jxb/ert139.
  • Chiang MH, Shen HL, Cheng WH. Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana. Plant Sci. 2015;236:260–271. doi:10.1016/j.plantsci.2015.04.009.
  • Saini S, Sharma I, Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci Internet. 2015;6. http://journal.frontiersin.org/Article/10.3389/fpls.2015.00950/abstract.
  • Rajewska I, Talarek M, Bajguz A. Brassinosteroids and response of plants to heavy metals action. Front Plant Sci Internet. 2016;7. http://journal.frontiersin.org/Article/10.3389/fpls.2016.00629/abstract.
  • Cheng X, Gou X, Yin H, Mysore KS, Li J, Wen J. Functional characterisation of brassinosteroid receptor MtBRI1 in medicago truncatula. Sci Rep. 2017;7:9327. doi:10.1038/s41598-017-09297-9.
  • Bielach A, Hrtyan M, Tognetti VB. Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci. 2017;18:E1427. doi:10.3390/ijms18071427.
  • Pacifici E, Polverari L, Sabatini S. Plant hormone cross-talk: the pivot of root growth. J Exp Bot. 2015;66:1113–1121. doi:10.1093/jxb/eru534.
  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci Internet. 2013;4. http://journal.frontiersin.org/article/10.3389/fpls.2013.00155/abstract.
  • Aznar A, Chen NWG, Thomine S, Dellagi A. Immunity to plant pathogens and iron homeostasis. Plant Sci. 2015;240:90–97. doi:10.1016/j.plantsci.2015.08.022.
  • Nechaeva PA, Natalia VA, Sadriev DS. Transaction costs in the interaction of logistics and marketing in the procurement. Acad Strategic Manage J. 2016;15:59–66.
  • Arif M, Lin W, Lin L, Islam W, Jie Z, He Z, Du Z, Wu Z. Cotton leaf curl multan virus infecting Hibiscus sabdariffa in China. Can J Plant Pathol. 2018;40:128–131. doi:10.1080/07060661.2017.1389770.
  • Munir M. Management of plant virus diseases; farmer’s knowledge and our suggestions. Hosts Virus. 2017;4:28–33.
  • Kumar R, Khurana A, Sharma AK. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot. 2014;65(16):4561–4575.
  • Kazan K, Lyons R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell Internet. 2014;26:2285–2309. doi:10.1105/tpc.113.120782.
  • Padmanabhan MS, Shiferaw H, Culver JN. The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant-Microbe Interact Internet. 2006;19:864–873. doi:10.1094/MPMI-19-0864.
  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell. 2003;4:205–217. doi:10.1016/S1534-5807(03)00025-X.
  • Abe H, Tomitaka Y, Shimoda T, Seo S, Sakurai T, Kugimiya S, Tsuda S, Kobayashi M. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol. 2012;53:204–212. doi:10.1093/pcp/pcs042.
  • Angel CA, Leisner SM, Nelson RS, Rodriguez A, Schoelz JE, Lutz L. Association of the P6 protein of cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiol. 2014;166:1345–1358. doi:10.1104/pp.114.249250.
  • Casteel CL, De Alwis M, Bak A, Dong H, Whitham SA, Jander G. Disruption of ethylene responses by turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant Physiol. 2015;169:209–218. doi:10.1104/pp.15.00332.
  • Guo H, Yin Y, Lin -H-H, Xi D-H, Zhang D-W, Deng X-G, Zhu T, Peng X-J. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in nicotiana benthamiana. Sci Rep. 2016;6:20579. doi:10.1038/srep20579.
  • Chen J, MacFarlane S, Zhu Q, Zhou X, Zhang H, Hong G, Yan F, He Y, Li J, Sun Z. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to rice black streaked dwarf virus infection in rice. New Phytol. 2016;214:388–399.
  • Robaglia C, Harchouni S, Ke H, Soubigou-Taconnat L, Sugliani M, Mouille G, Citerne S, Field B, Fakhfakh H, Abdelkefi H. Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to turnip mosaic virus. Mol Plant Pathol. 2017;19:634–646.
  • Xie K, Li L, Zhang H, Wang R, Tan X, He Y, Hong G, Li J, Ming F, Yao X, et al. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Env. 2018;41:2504–2514. doi:10.1111/pce.13372.
  • Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y. The Rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms1. Plant Physiol. 2005;139:1935–1945. doi:10.1104/pp.105.072306.
  • Geri C, Love AJ, Cecchini E, Barrett SJ, Laird J, Covey SN, Milner JJ. Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. Plant Mol Biol. 2004;56:111–124. doi:10.1007/s11103-004-2649-x.
  • Wang X, Goregaoker SP, Culver JN. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol Internet. 2009;83:9720–9730. doi:10.1128/JVI.02516-08.
  • Love AJ, Geri C, Laird J, Carr C, Yun BW, Loake GJ, Tada Y, Sadanandom A, Milner JJ. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One. 2012;7:e47535. doi:10.1371/journal.pone.0047535.
  • Lewsey M, Surette M, Robertson FC, Ziebell H, Choi SH, Ryu KH, Canto T, Palukaitis P, Payne T, Walsh JA, et al. The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. Mol Plant-Microbe Interact Internet. 2009;22:642–654. http://apsjournals.apsnet.org/doi/10.1094/MPMI-22-6-0642.
  • Groen SC, Moulin M, Powell G, Stevens M, Tungadi T, Ziebell H, Kleczkowski A, Carr JP, Murphy AM, Lewsey MG, et al. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci Rep. 2011;1:187. doi:10.1038/srep00187.
  • Culver JN, Golem S, Shiferaw H, Padmanabhan MS, Goregaoker SP. Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol. 2005;79:2549–2558. doi:10.1128/JVI.79.20.12905-12913.2005.
  • Lozano-Durán R, Rosas-Díaz T, Luna AP, Bejarano ER. Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS One. 2011;6:e22383. doi:10.1371/journal.pone.0022383.
  • Nafisi M, Fimognari L, Sakuragi Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry. 2015;112(112):63–71. doi:10.1016/j.phytochem.2014.11.008.
  • Wang X, Jiang N, Liu J, Liu W, Wang GL. The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence. 2014;5:722–732. doi:10.4161/viru.29798.
  • Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, Ji S, Wu J, Wei C, Ding B, et al. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog. 2016;12:e1005847. doi:10.1371/journal.ppat.1005847.
  • Schaller GE, Bishopp A, Kieber JJ. The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell Online Internet. 2015;27:44–63. doi:10.1105/tpc.114.133595.
  • Manojkumar S, Subbaiya R. Isolation and identification of soil derived actinomycetes nocardiopsis alba. Res J Pharm, Biol Chem Sci. 2016;7:485–493.
  • Padmanabhan MS, Kramer SR, Wang X, Culver JN. Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol. 2008;82:2477–2485. doi:10.1128/JVI.01931-07.
  • Collum TD, Padmanabhan MS, Hsieh Y-C, Culver JN. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci Internet. 2016;113:E2740–9. doi:10.1073/pnas.1524390113.
  • Yu H, Soler M, Clemente HS, Mila I, Paiva JAP, Myburg AA, Bouzayen M, Grima-Pettenati J, Cassan-Wang H. Comprehensive genome-wide analysis of the Aux/IAA gene family in eucalyptus: evidence for the role of EgrIAA4 in wood formation. Plant Cell Physiol. 2015;56:700–714. doi:10.1093/pcp/pcu215.
  • Xie R, Pang S, Ma Y, Deng L, He S, Yi S, Lv Q, Zheng Y. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Mol Genet Genomics. 2015;290:2089–2105. doi:10.1007/s00438-015-1063-1.
  • Weijers D, Wagner D. Transcriptional responses to the auxin hormone. Annu Rev Plant Biol Internet. 2016;67:539–574. doi:10.1146/annurev-arplant-043015-112122.
  • Bargmann BOR, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, et al. A map of cell type-specific auxin responses. Mol Syst Biol. 2013;9:688. doi:10.1038/msb.2013.40.
  • Conti G, Rodriguez MC, Venturuzzi AL, Asurmendi S. Modulation of host plant immunity by Tobamovirus proteins. Ann Bot. 2017;119:737–747.
  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol Internet. 2012;28:489–521. http://www.annualreviews.org/doi/10.1146/annurev-cellbio-092910-154055.
  • Wang M-B, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. Mol Plant-Microbe Interact Internet. 2012;25:1275–1285. http://apsjournals.apsnet.org/doi/10.1094/MPMI-04-12-0093-CR.
  • Díaz-Pendón JA, Ding S-W. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol Internet. 2008;46:303–326. doi:10.1146/annurev.phyto.46.081407.104746.
  • Ghoshal B, Sanfaçon H. Symptom recovery in virus-infected plants: revisiting the role of RNA silencing mechanisms. Virology. 2015;479–480:167–179. doi:10.1016/j.virol.2015.01.008.
  • Islam W, Noman A, Qasim M, Wang L. Plant responses to pathogen attack: small RNAs in focus. Int J Mol Sci Internet. 2018;19:515. doi:10.3390/ijms19020515.
  • Islam W, Islam SU, Qasim M, Wang L. Host-Pathogen interactions modulated by small RNAs. RNA Biol. 2017;14:891–904. doi:10.1080/15476286.2017.1318009.
  • Islam W, Qasim M, Noman A, Adnan M, Tayyab M, Farooq TH, Wei H, Wang L. Plant microRNAs: front line players against invading pathogens. Microb Pathog Internet. 2018;118:9–17. doi:10.1016/j.micpath.2018.03.008.
  • Csorba T, Kontra L, Burgyán J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology. 2015;479–480:85–103. doi:10.1016/j.virol.2015.02.028.
  • de Saint Germain A, Ligerot Y, Dun EA, Pillot J-P, Ross JJ, Beveridge CA, Rameau C. Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol Internet. 2013;163:1012–1025. doi:10.1104/pp.113.220541.
  • Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T, Kikuchi S. Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS One. 2011;6:e18094. doi:10.1371/journal.pone.0018094.
  • Hayashi KI, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, et al. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol Internet. 2010;153:1085–1097. http://www.plantphysiol.org/cgi/doi/10.1104/pp.110.157909.
  • Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21:R338–R345. doi:10.1016/j.cub.2011.02.036.
  • Rodriguez A, Angel CA, Lutz L, Leisner SM, Nelson RS, Schoelz JE. Association of the P6 protein of cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiol Internet. 2014;166:1345–1358. doi:10.1104/pp.114.249250.
  • Kakumani PK, Ponia SS, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol Internet. 2013;87:8870–8883. http://jvi.asm.org/cgi/doi/10.1128/JVI.02774-12.
  • Angel CA, Lutz L, Yang X, Rodriguez A, Adair A, Zhang Y, Leisner SM, Nelson RS, Schoelz JE. The P6 protein of cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments. Virology. 2013;443:363–374. doi:10.1016/j.virol.2013.04.004.
  • Wang W, Esch JJ, Shiu S-H, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of arabidopsis. Plant Cell Online Internet. 2006;18:3429–3442. doi:10.1105/tpc.106.044537.
  • Gao Q-M, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. Front Plant Sci Internet. 2015;06. http://journal.frontiersin.org/article/10.3389/fpls.2015.00228/abstract.
  • Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–863. doi:10.1146/annurev-arplant-042811-105606.
  • Voigt CA. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci Internet. 2014;5. http://journal.frontiersin.org/article/10.3389/fpls.2014.00168/abstract.
  • Yi SY, Shirasu K, Moon JS, Lee SG, Kwon SY. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One. 2014;9:e88951. doi:10.1371/journal.pone.0088951.
  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact Internet. 2011;24:183–193. doi:10.1094/MPMI-07-10-0149.
  • Ellili A, Rabier J, Prudent P, Salducci MD, Heckenroth A, Lachaâl M, Laffont-Schwob I. Decision-making criteria for plant-species selection for phytostabilization: issues of biodiversity and functionality. J Environ Manage. 2017;201:215–226. doi:10.1016/j.jenvman.2017.06.041.
  • Guerreiro A, Figueiredo J, Sousa Silva M, Figueiredo A. Linking jasmonic acid to grapevine resistance against the biotrophic oomycete plasmopara viticola. Front Plant Sci Internet. 2016;7. http://journal.frontiersin.org/Article/10.3389/fpls.2016.00565/abstract.
  • Yuan HM, Liu WC, Lu YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microb. 2017;21:143–155. doi:10.1016/j.chom.2017.01.007.
  • Yang Y-X, Ahammed G, Wu C, Fan S, Zhou Y-H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Pept Sci Internet. 2015;16:450–461. doi:10.2174/1389203716666150330141638.
  • Xu E, Brosché M. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biol. 2014;14:155. doi:10.1186/1471-2229-14-155.
  • Kawagoe Y, Shiraishi S, Kondo H, Yamamoto S, Aoki Y, Suzuki S. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem Biophys Res Commun. 2015;460:1015–1020. doi:10.1016/j.bbrc.2015.03.143.
  • Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennett MH, Moulin M, Hanke DE, Powell G, et al. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant-Microbe Interact Internet. 2010;23:835–845. http://apsjournals.apsnet.org/doi/10.1094/MPMI-23-7-0835.
  • Carella P, Wilson DC, Cameron RK. Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis. Front Plant Sci Internet. 2015;5. http://journal.frontiersin.org/article/10.3389/fpls.2014.00775/abstract.
  • Baebler Š, Witek K, Petek M, Stare K, Tušek-Žnidarič M, Pompe-Novak M, Renaut J, Szajko K, Strzelczyk-Zyta D, Marczewski W, et al. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against potato virus y infection in potato. J Exp Bot. 2014;65:1095–1109. doi:10.1093/jxb/eru348.
  • Wang X, Culver JN. DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus. BMC Plant Biol. 2012;12:157. doi:10.1186/1471-2229-12-157.
  • Rodriguez MC, Conti G, Zavallo D, Manacorda CA, Asurmendi S. TMV-Cg coat protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol. 2014;14. doi:10.1186/s12870-014-0210-x.
  • Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J Exp Bot. 2015;66:4885–4896. doi:10.1093/jxb/erv297.
  • Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol Internet. 2011;49:317–343. http://www.annualreviews.org/doi/10.1146/annurev-phyto-073009-114447.
  • Oka K, Kobayashi M, Mitsuhara I, Seo S. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco. Plant Cell Physiol. 2013;54:1999–2010. doi:10.1093/pcp/pct065.
  • Takahashi H, Miller J, Nozaki Y, Sukamto TM, Shah J, Hase S, Ikegami M, Ehara Y, Sp D-K. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to Cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 2002;32:655–667.
  • Westwood JH, Lewsey MG, Murphy AM, Tungadi T, Bates A, Gilligan CA, Carr JP. Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant-aphid interactions. J Gen Virol. 2014;95:733–739. doi:10.1099/vir.0.054783-0.
  • Lulai E, Huckle L, Neubauer J, Suttle J. Coordinate expression of AOS genes and JA accumulation: JA is not required for initiation of closing layer in wound healing tubers. J Plant Physiol. 2011;168:976–982. doi:10.1016/j.jplph.2010.12.001.
  • Sahu PP, Prasad M. Application of molecular antiviral compounds: novel approach for durable resistance against geminiviruses. Mol Biol Rep. 2015;42:1157–1162. doi:10.1007/s11033-015-3852-3.
  • Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith REJ, et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature. 2016;531:598–603. doi:10.1038/nature17416.
  • De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant. 2014;7:943–959. doi:10.1093/mp/ssu050.
  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33:887–898. doi:10.1046/j.1365-313X.2003.01675.x.
  • Lai Y. A statistical method for estimating the proportion of differentially expressed genes. Comput Biol Chem. 2006;30:193–202. doi:10.1016/j.compbiolchem.2005.10.002.
  • Mills-Lujan K, Deom CM. Geminivirus C4 protein alters Arabidopsis development. Protoplasma. 2010;239:95–110. doi:10.1007/s00709-009-0086-z.
  • Kørner CJ, Klauser D, Niehl A, Domínguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant-Microbe Interact Internet. 2013;26:1271–1280. doi:10.1094/MPMI-06-13-0179-R.
  • Postma J, Liebrand TWH, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H, Joosten MHAJ, Robatzek S. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytol. 2016;210:627–642. doi:10.1111/nph.13802.
  • Zhang X, Zhang X, Singh J, Li D, Qu F. Temperature-dependent survival of turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J Virol Internet. 2012;86:6847–6854. doi:10.1128/JVI.00497-12.
  • Csorba T, Lózsa R, Hutvágner G, Burgyán J. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J. 2010;62:463–472. doi:10.1111/j.1365-313X.2010.04186.x.
  • Vaucheret H, Mallory AC, Bartel DP. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell. 2006;22:129–136. doi:10.1016/j.molcel.2006.03.011.
  • Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W. Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol Internet. 2012;158:1279–1292. doi:10.1104/pp.111.189621.
  • Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol. 2013;11(11):745–760. doi:10.1038/nrmicro3120.
  • Clemente-Moreno MJ, Hernández JA, Diaz-Vivancos P. Sharka: how do plants respond to Plum pox virus infection? J Exp Bot. 2015;66:25–35. doi:10.1093/jxb/eru428.
  • Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V. Hairpin RNA-mediated silencing of plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res. 2005;14:989–994. doi:10.1007/s11248-005-8925-y.
  • Tian M, Sasvari Z, Gonzalez PA, Friso G, Rowland E, Liu X-M, van Wijk KJ, Nagy PD, Klessig DF. Salicylic acid inhibits the replication of tomato bushy stunt virus by directly targeting a host component in the replication complex. Mol Plant Microbe Interact Internet. 2015;28:379–386. doi:10.1094/MPMI-09-14-0259-R.
  • Huang T-S, Nagy PD. Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J Virol Internet. 2011;85:9090–9102. doi:10.1128/JVI.00666-11.
  • Alazem M, Lin K-Y, Lin N-S. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant-Microbe Interact Internet. 2014;27:177–189. doi:10.1094/MPMI-08-13-0216-R.
  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146:1368–1385. doi:10.1104/pp.107.110361.
  • Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant. 2011;4:813–831. doi:10.1093/mp/ssr070.
  • Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytol. 2013;200:1187–1199. doi:10.1111/nph.12436.
  • Zavaliev R, Ueki S, Epel BL, Citovsky V. Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma. 2011;248:117–130. doi:10.1007/s00709-010-0247-0.
  • Zhang H, Shi WL, You JF, M DB, Qin XM, Yu H, Liu Q, Ryan PR, Yang ZM. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolorL.) show reduced callose deposition and increased tolerance to aluminium toxicity. Plant, Cell Environ. 2015;38:1178–1188. doi:10.1111/pce.12472.
  • Li W, Zhao Y, Liu C, Yao G, Wu S, Hou C, Zhang M, Wang D. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 2012;31:905–916. doi:10.1007/s00299-012-1250-z.
  • De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci Internet. 2014;5. http://journal.frontiersin.org/article/10.3389/fpls.2014.00138/abstract.
  • Chen L, Zhang L, Li D, Wang F, Yu D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci Internet. 2013;110:E1963–71. doi:10.1073/pnas.1221347110.
  • Lee WS, Fu SF, Li Z, Murphy AM, Dobson EA, Garland L, Chaluvadi SR, Lewsey MG, Nelson RS, Carr JP. Salicylic acid treatment and expression of an RNA-dependent RNA polymerase 1 transgene inhibit lethal symptoms and meristem invasion during Tobacco mosaic virusinfection in Nicotiana benthamiana. BMC Plant Biol. 2016;16. doi:10.1186/s12870-016-0796-2.
  • Qin L, Mo N, Zhang Y, Muhammad T, Zhao G, Zhang Y, Liang Y. CaRDR1, an RNA-dependent RNA polymerase plays a positive role in pepper resistance against TMV. Front Plant Sci Internet. 2017;8. http://journal.frontiersin.org/article/10.3389/fpls.2017.01068/full.
  • Yadav SR, Yan D, Sevilem I, Helariutta Y. Plasmodesmata-mediated intercellular signaling during plant growth and development. Front Plant Sci. 2014;5. doi:10.3389/fpls.2014.00044.
  • Wang X, Sager R, Cui W, Zhang C, Lu H, Lee J-Y. Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell Internet. 2013;25:2315–2329. doi:10.1105/tpc.113.114959.
  • Lim GH, Shine MB, De Lorenzo L, Yu K, Cui W, Navarre D, Hunt AG, Lee JY, Kachroo A, Kachroo P. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microb. 2016;19:541–549. doi:10.1016/j.chom.2016.03.006.
  • Chivasa S. Salicylic acid interferes with Tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism [Internet]. Plant Cell Online. 1997;9:547–557. http://www.plantcell.org/cgi/doi/10.1105/tpc.9.4.547.
  • Faoro F, Gozzo F. Is modulating virus virulence by induced systemic resistance realistic? Plant Sci. 2015;234:1–13. doi:10.1016/j.plantsci.2015.01.011.
  • Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P, Voinnet O, Bouarab K. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog. 2013;9:e1003435. doi:10.1371/journal.ppat.1003435.
  • Zhang C, Grosic S, Whitham SA, Hill JH. The requirement of multiple defense genes in soybean Rsv1 –mediated extreme resistance to soybean mosaic virus. Mol Plant-Microbe Interact Internet. 2012;25:1307–1313. doi:10.1094/MPMI-02-12-0046-R.
  • Zhang H, Zhao J, Liu S, Zhang DP, Liu Y. Tm-22 confers different resistance responses against Tobacco mosaic virus dependent on its expression level. Mol Plant. 2013;6:971–974. doi:10.1093/mp/sst069.
  • Huang Z. Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. Plant Physiol Internet. 2005;137:1147–1159. doi:10.1104/pp.104.056028.
  • Wang SD, Zhu F, Yuan S, Yang H, Xu F, Shang J, Xu MY, Jia SD, Zhang ZW, Wang JH, et al. The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. Planta. 2011;234:171–181. doi:10.1007/s00425-011-1391-2
  • Nakano K, Ando T, Yamagishi M, Yokoyama K, Ishida T, Ohsugi T, Tanaka Y, Brighty DW, Watanabe T. Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication. Microbes Infect. 2013;15:491–505. doi:10.1016/j.micinf.2013.03.006.
  • Bouttier M, Saumet A, Peter M, Courgnaud V, Schmidt U, Cazevieille C, Bertrand E, Lecellier CH. Retroviral GAG proteins recruit AGO2 on viral RNAs without affecting RNA accumulation and translation. Nucleic Acids Res. 2012;40:775–786. doi:10.1093/nar/gkr762.
  • Jovel J, Walker M, Sanfacon H. Salicylic acid-dependent restriction of tomato ringspot virus spread in tobacco is accompanied with a hypersensitive response, local RNA silencing and moderate systemic resistance. Mol Plant-Microbe Interact Internet. 2011;24:110220083022068. http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-09-10-0224?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed.
  • Hunter LJR, Brockington SF, Murphy AM, Pate AE, Gruden K, Macfarlane SA, Palukaitis P, Carr JP. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases. Sci Rep. 2016;6:23082. doi:10.1038/srep23082.
  • Rakhshandehroo F, Rezaee S, Palukaitis P. Silencing the tobacco gene for RNA-dependent RNA polymerase 1 and infection by potato virus Y cause remodeling of cellular organelles. Virology. 2017;510:127–136. doi:10.1016/j.virol.2017.07.013.
  • Lewsey MG, Carr JP. Effects of DICER-like proteins 2, 3 and 4 on Cucumber mosaic virus and Tobacco mosaic virus infections in salicylic acid-treated plants. J Gen Virol. 2009;90:3010–3014. doi:10.1099/vir.0.009381-0.
  • Campos L, Granell P, Tárraga S, López-Gresa P, Conejero V, Bellés JM, Rodrigo I, Lisón P. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiol Biochem. 2014;77:35–43. doi:10.1016/j.plaphy.2014.01.016.
  • Ji L-H, Ding S-W. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant-Microbe Interact Internet. 2007;14:715–724. http://apsjournals.apsnet.org/doi/10.1094/MPMI.2001.14.6.715.
  • Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis argonaute1 cleavage activity to counter plant defense. Genes Dev. 2006;20:3255–3268. doi:10.1101/gad.1495506.
  • Der WK, Empleo R, Nguyen TTV, Moffett P, Sacco MA. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses. Mol Plant Pathol. 2015;16:435–448. doi:10.1111/mpp.12201.
  • Wan J, Cabanillas DG, Zheng H, Laliberté J-F. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. Plant Physiol Internet. 2015;167:1374–1388. doi:10.1104/pp.15.00097.
  • Islam W, Akutse KS, Qasim M, Khan KA, Ghramh HA, Idrees A, Latif S. Bemisia tabaci-mediated facilitation in diversity of begomoviruses: evidence from recent molecular studies. Microb Pathog. 2018;123:162–168. doi:10.1016/j.micpath.2018.07.008.
  • Islam W, Lin W, Islam SU, Arif M, Li X, Yang Y, Ding X, Du Z, Wu Z. Genetic diversity of begomoviruses in Pakistan captured through a vector based survey. Microb Pathog Internet. 2018;118:91–97. doi:10.1016/j.micpath.2018.03.019.
  • Tomitaka Y, Abe H, Sakurai T, Tsuda S. Preference of the vector thrips Frankliniella occidentalis for plants infected with thrips-non-transmissible tomato spotted wilt virus. J Appl Entomol. 2015;139:250–259. doi:10.1111/jen.2015.139.issue-4.
  • Macharia I, Backhouse D, Skilton R, Ateka E, Wu SB, Njahira M, Maina S, Harvey J. Diversity of thrips species and vectors of tomato spotted wilt virus in tomato production systems in Kenya. J Econ Entomol. 2015;108:20–28. doi:10.1093/jee/tou010.
  • López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Bellés JM. Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS One. 2016;11:e0166938. doi:10.1371/journal.pone.0166938.
  • Revers F, García JA. Molecular biology of potyviruses. Adv Virus Res. 2015;92:101–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.