1,050
Views
3
CrossRef citations to date
0
Altmetric
Addendum

Mesophyll-specific phytochromes impact chlorophyll light-harvesting complexes (LHCs) and non-photochemical quenching

& ORCID Icon
Article: 1609857 | Received 25 Mar 2019, Accepted 16 Apr 2019, Published online: 30 Apr 2019

References

  • Müller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001;125:1558–1566.
  • Maxwell K, Johnson GN. Chlorophyll fluorescence – a practical guide. J Exp Bot. 2000;51:659–668.
  • Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol. 2008;59:89–113. doi:10.1146/annurev.arplant.59.032607.092759.
  • Niyogi KK, Grossman AR, Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 1998;10:1121–1134.
  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett. 1991;292:1–4.
  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000;403:391–395. doi:10.1038/35000131.
  • Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants. 2016;2:15225. doi:10.1038/nplants.2015.225.
  • Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants. 2017;3:16225. doi:10.1038/nplants.2016.225.
  • Haldrup A, Lunde C, Scheller HV. Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem. 2003;278:33276–33283. doi:10.1074/jbc.M305106200.
  • Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol. 2010;91:29–66. doi:10.1016/S0070-2153(10)91002-8.
  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science. 2001;291:2138–2141. doi:10.1126/science.291.5511.2138.
  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A. 2001;98:6969–6974. doi:10.1073/pnas.101137598.
  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature. 2002;420:829–832. doi:10.1038/nature01213.
  • Sawers RJH, Linley PJ, Farmer PR, Hanley NP, Costich DE, Terry MJ, Brutnell TP. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol. 2002;130(1):155–163. doi:10.1104/pp.006411.
  • Neuhaus G, Bowler C, Kern R, Chua N-H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993;73:937–995.
  • Chory J, Peto CA, Ashbaugh M, Saganich R, Pratt L, Ausubel F. Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell. 1989;1:867–880. doi:10.1105/tpc.1.9.867.
  • Koorneef M, Cone JW, Dekens RG, O‘Herne-Robers EG, Spruitt CJP, Kendrick RE. Photomorphogenic responses of long-hypocotyl mutants of tomato. J Plant Physiol. 1985;120:153–165. doi:10.1016/S0176-1617(85)80019-5.
  • Walters RG, Rogers JJ, Shephard F, Horton P. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta. 1999;209:517–527. doi:10.1007/s004250050756.
  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell. 1999;11:335–348.
  • Warnasooriya SN, Montgomery BL. Detection of spatial-specific phytochrome responses using targeted expression of biliverdin reductase in Arabidopsis. Plant Physiol. 2009;149:424–433. doi:10.1104/pp.108.127050.
  • Montgomery BL. Spatial-specific phytochrome responses during de-etiolation in Arabidopsis thaliana. Plant Signal Behav. 2009;4:47–49.
  • Warnasooriya SN, Porter KJ, Montgomery BL. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana. Plant Signal Behav. 2011;6:624–631.
  • Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis thaliana. Plant Physiol. 2011;157:1138–1150. doi:10.1104/pp.111.184689.
  • Oh S, Montgomery BL. Identification of proteins associated with spatial-specific phytochrome-mediated light signaling in Arabidopsis thaliana by liquid chromatography-tandem mass spectrometry. Gravit Space Biol. 2011;25:22–32.
  • Woodson JD, Perez‐Ruiz JM, Schmitz RJ, Ecker JR, Chory J. Sigma factor‐mediated plastid retrograde signals control nuclear gene expression. Plant J. 2013;73(1):1–13. doi:10.1111/tpj.12011.
  • Oh S, Strand DD, Kramer DM, Chen J, Montgomery BL. Transcriptome and phenotyping analyses support a role for chloroplast Sigma Factor 2 in red-light-dependent regulation of growth, stress, and photosynthesis. Plant Direct J. 2018;2(2):e00043-1–e00043-17. doi:10.1002/pld3.43.
  • Oh S, Montgomery BL. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana. J Exp Bot. 2013;64(18):5457–5472. doi:10.1093/jxb/ert308.
  • Oh S, Montgomery BL. Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signalling and photomorphogenesis. Front Plant Sci. 2014;5:171. doi:10.3389/fpls.2014.00171.
  • Montgomery BL, Yeh KC, Crepeau MW, Lagarias JC. Modification of distinct aspects of photomorphogenesis via targeted expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant Physiol. 1999;121:629–639.
  • Lagarias DM, Crepeau MW, Maines MD, Lagarias JC. Regulation of photomorphogenesis by expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant Cell. 1997;9:675–788. doi:10.1105/tpc.9.5.675.
  • Lu Y, Savage LJ, Ajjawi I, Imre KM, Yoder DW, Benning C, Dellapenna D, Ohlrogge JB, Osteryoung KW, Weber AP, et al. New connections across pathways and cellular processes: industrialized mutant screening reveals novel associations between diverse phenotypes in Arabidopsis. Plant Physiol. 2008;146:1482–1500. doi:10.1104/pp.107.115220.
  • Ioannidis NE, Cruz JA, Kotzabasis K, Kramer DM. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS One. 2012;7(1):e29864. doi:10.1371/journal.pone.0029864.
  • Avenson TJ, Cruz JA, Kramer DM. Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci U S A. 2004;101:5530–5535. doi:10.1073/pnas.0401269101.
  • Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM. Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci USA. 2015;112:5539–5544. doi:10.1073/pnas.1418223112.
  • Moran R. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 1982;69:1376–1381.
  • Inskeep WP, Bloom PR. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 1985;77:483–485.
  • Schwarz E 2010. Regulation of the chloroplast light harvesting antenna by plastoquinone redox: Modulation of chlorophyll metabolism and thylakoid complex organization. PhD thesis. University of Illinois at Urbana-Champaign. Illinois (USA).
  • Allen KD, Staehelin LA. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal Biochem. 1991;194:214–222.
  • Han S, Kim D. AtRTPrimer: database for Arabidopsis genome-wide homogeneous and specific RT-PCR primer-pairs. BMC Bioinformatics. 2006;7:179. doi:10.1186/1471-2105-7-179.
  • Montgomery BL, Franklin KA, Terry MJ, Thomas B, Jackson S, Crepeau MW, Lagarias JC. Biliverdin reductase-induced phytochrome chromophore deficiency in transgenic tobacco. Plant Physiol. 2001;125:266–277.
  • Zheng X, Li L, Lin W, Xie W, Yang J, Chen S, Jin W. Chlorophyll deficiency in the maize elongated mesocotyl 2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS ONE. 2013;8:e80107.
  • Terashima I, Hikosaka K. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 1995;18:1111–1128. doi:10.1111/pce.1995.18.issue-10.
  • Tanaka R, Tanaka A. Chlorophyll b is not just an accessory pigment but a regulator of the photosynthetic antenna. Porphyrins. 2000;9:240–245.
  • Härtel H, Lokstein H, Grimm B, Rank B. Kinetic studies on the xanthophyll cycle in barley leaves (influence of antenna size and relations to nonphotochemical chlorophyll fluorescence quenching). Plant Physiol. 1996;110:471–482.
  • Terry MJ. Phytochrome chromophore‐deficient mutants. Plant Cell Environ. 1997;20:740–745.
  • Zolla L, Timperio AM, Walcher W, Huber CG. Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem II. Plant Physiol. 2003;131:198–214. doi:10.1104/pp.012823.
  • Caffarri S, Croce R, Cattivelli L, Bassi R. A look within LHCII: differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry. 2004;43:9467–9476. doi:10.1021/bi036265i.
  • Dreyfus BW, Thornber JP. Assembly of the light-harvesting complexes (LHC) of photosystem II: monomeric LHC IIb complexes are intermediates in the formation of oligomeric LHC IIb complexes. Plant Physiol. 1994;106:829–839.
  • Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P, Jansson S. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness. Plant J. 2003;35:350–361.
  • Montgomery BL. Spatiotemporal phytochrome signaling during photomorphogenesis: from physiology to molecular mechanisms and back. Front Plant Sci. 2016;7:480. doi:10.3389/fpls.2016.00480.
  • Montgomery BL. Right place, right time: spatiotemporal light regulation of plant growth and development. Plant Signal Behav. 2008;3:1053–1060.
  • Oh S, Warnasooriya SN, Montgomery BL. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana. Plant Mol Biol. 2013;81(6):627–640. doi:10.1007/s11103-013-0029-0.
  • Franklin KA, Linley PJ, Montgomery BL, Lagarias JC, Thomas B, Jackson SD, Terry MJ. Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase. Plant J. 2003;35:717–728.
  • Pogson BJ, Niyogi KK, Björkman O, DellaPenna D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci U S A. 1998;95:13324–13329.
  • Lokstein H, Tian L, Polle JE, DellaPenna D. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta. 2002;1553:309–319.
  • Szechyńska-Hebda M, Kruk J, Górecka M, Karpińska B, Karpiński S. Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell. 2010;22:2201–2218. doi:10.1105/tpc.109.069302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.