1,395
Views
12
CrossRef citations to date
0
Altmetric
Short Communication

Misleading conclusions from exogenous ABA application: a cautionary tale about the evolution of stomatal responses to changes in leaf water status

ORCID Icon & ORCID Icon
Article: 1610307 | Received 26 Feb 2019, Accepted 18 Apr 2019, Published online: 27 Apr 2019

References

  • Brodribb TJ, McAdam SAM. Evolution of the stomatal regulation of plant water content. Plant Physiol. 2017;174:639–649. doi:10.1104/pp.16.01930.
  • Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure. Ecol Lett. 2017;20:1437–1447. doi:10.1111/ele.12851.
  • Kim T, Bohmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network : advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol. 2010;61:561–591. doi:10.1146/annurev-arplant-042809-112226.
  • Daszkowska-Golec A, Szarejko I. Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci. 2013;4:138. doi:10.3389/fpls.2013.00138.
  • Yoshida T, Fernie AR. Remote control of transpiration via ABA. Trends Plant Sci. 2018;23:755–758. doi:10.1016/j.tplants.2018.07.001.
  • Cai S, Chen G, Wang Y, Huang Y, Marchant DB, Wang Y, Yang Q, Dai F, Hills A, Franks PJ, et al. Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiol. 2017;174:732–747. doi:10.1104/pp.16.01930.
  • Sussmilch FC, Roelfsema MRG, Hedrich R. On the origins of osmotically driven stomatal movements. New Phytol. 2019;222:84–90. In Press. doi:10.1111/nph.2019.222.issue-1.
  • Chater C, Kamisugi Y, Movahedi M, Fleming A, Cuming AC, Gray JE, Beerling DJ. Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Curr Biol. 2011;21:1025–1029. doi:10.1016/j.cub.2011.04.032.
  • Edwards D, Kerp H, Hass H. Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot. 1998;49:255–278. doi:10.1093/jxb/49.Special_Issue.255.
  • Pressel S, Renzaglia KS, Clymo RSD, Duckett JG. Hornwort stomata do not respond actively to exogenous and environmental cues. Ann Bot. 2018;122:45–57. doi:10.1093/aob/mcy045.
  • Renzaglia KS, Villarreal JC, Piatkowski BT, Lucas JR, Merced A. Hornwort stomata: architecture and fate shared with 400-million-year-old fossil plants without leaves. Plant Physiol. 2017;174:788–797. doi:10.1104/pp.16.01930.
  • Duckett JG, Pressel S. The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes — two ignored dimensions. Philos Trans R Soc B Biol Sci. 2017;373:20160498. doi:10.1098/rstb.2016.0498.
  • Pressel S, Goral T, Duckett JG. Stomatal differentiation and abnormal stomata in hornworts. J Bryol. 2014;36:87–103. doi:10.1179/1743282014Y.0000000103.
  • Field KJ, Duckett JG, Cameron DD, Pressel S. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. Ann Bot. 2015;115:915–922. doi:10.1093/aob/mcv021.
  • Duckett JG, Pressel S, Kmy P, Renzaglia KS. Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. New Phytol. 2009;183:1053–1063. doi:10.1111/j.1469-8137.2009.02905.x.
  • Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389:33–39. doi:10.1038/37918.
  • Hotton CL, Hueber FM, Griffing DH, Bridge JS. Early terrestrial plant paleoenvironments: an example from the Emsian of Gaspé, Canada. In: Gensel PG, Edwards D, editors. Early land plants and their environments. New York: Columbia University Press; 1998.
  • Raven JA. Selection pressures on stomatal evolution. New Phytol. 2002;153:371–386. doi:10.1046/j.0028-646X.2001.00334.x.
  • Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature. 2003;424:901–908. doi:10.1038/nature01843.
  • Raissig MT, Matos JL, Gil MXA, Kornfeld A, Bettadapur A, Abrash E, Allison HR, Badgley G, Vogel JP, Berry JA, et al. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science. 2017;355:1215–1218. doi:10.1126/science.aal3254.
  • Doi M, Shimazaki K. The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiol. 2008;147:922–930. doi:10.1104/pp.107.115535.
  • Brodribb TJ, McAdam SAM. Passive origins of stomatal control. Science. 2011;582–585. doi:10.1126/science.1197985.
  • Soni DK, Ranjan S, Singh R, Khare PB, Pathre UV, Shirke PA. Photosynthetic characteristics and the response of stomata to environmental determinants and ABA in Selaginella bryopteris, a resurrection spike moss species. Plant Sci. 2012;191–192:43–52. doi:10.1016/j.plantsci.2012.04.011.
  • Hõrak H, Kollist H, Merilo E. Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiol. 2017;174:672–679. doi:10.1104/pp.16.01930.
  • Grantz DA, Linscheid BS, Grulke NE. Differential responses of stomatal kinetics and steady state conductance to abscisic acid in a fern: comparison with a gymnosperm and an angiosperm. New Phytol. 2019;In Press. doi:10.1111/nph.15736.
  • McAdam SAM, Brodribb TJ. Fern and lycophyte guard cells do not respond to endogenous abscisic acid. Plant Cell. 2012;24:1510–1521. doi:10.1105/tpc.112.098962.
  • Brodribb TJ, McAdam SAM, Carins Murphy MR. Xylem and stomata, coordinated through time and space. Plant Cell Environ. 2017;40:872–880. doi:10.1111/pce.12817.
  • Cardoso AA, Randall JM, McAdam SAM. Hydraulics regulate stomatal responses to changes in leaf water status in the fern Athyrium filix-femina. Plant Physiol. 2019;179:533–543. doi:10.1104/pp.18.01412.
  • Christmann A, Hoffmann T, Teplova I, Grill E, Muller A. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 2005;137:209–219. doi:10.1104/pp.104.053082.
  • Yan J, Tsuichihara N, Etoh T, Iwai S. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ. 2007;30:1320–1325. doi:10.1111/pce.2007.30.issue-10.
  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:627–658. doi:10.1146/annurev.arplant.52.1.627.
  • Wilkinson S, Davies WJ. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 2002;25:195–210. doi:10.1046/j.0016-8025.2001.00824.x.
  • Martins SCV, Mcadam SAM, Deans RM, Damatta FM, Brodribb TJ. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves. Plant Cell Environ. 2016;39:694–705. doi:10.1111/pce.12668.
  • Deans RM, Brodribb TJ, Mcadam SAM. An integrated hydraulic-hormonal model of conifer stomata predicts water stress dynamics. Plant Physiol. 2017;174:478–486. doi:10.1104/pp.16.01930.
  • Mcadam SAM, Brodribb TJ, Banks JA, Hedrich R, Atallah NM, Cai C, Geringer MA, Lind C, Nichols DS, Stachowski K, et al. Abscisic acid controlled sex before transpiration in vascular plants. Proc Natl Acad Sci U S A. 2016;113:12862–12867. doi:10.1073/pnas.1606614113.
  • Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM. Land plants acquired active stomatal control early in their evolutionary history. Curr Biol. 2011;21:1030–1035. doi:10.1016/j.cub.2011.04.044.
  • De Silva DLR, Cox RC, Hetherington AM, Mansfield TA. The role of abscisic acid and calcium in determining the behaviour of adaxial and abaxial stomata. New Phytol. 1986;104:41–51. doi:10.1111/j.1469-8137.1986.tb00632.x.
  • Raschke K. Action of abscisic acid on guard cells. In: Zeiger GDFE, Cowan IR, editors. Stomatal function. Stanford (USA): Stanford Univ Press; 1987. p. 253–279.
  • Raghavendra AS, Reddy KB. Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate. Plant Physiol. 1987;83:732–734.
  • Shen L, Sun P, Bonnell VC, Edwards KJ, Hetherington AM, McAinsh MR, Roberts MR. Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species. Front Plant Sci. 2015;6:553. doi:10.3389/fpls.2015.00533.
  • McAdam SAM, Brodribb TJ. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol. 2015;167:833–843. doi:10.1104/pp.114.252940.
  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14:3089–3099.
  • Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol. 2005;15:1201–1206. doi:10.1016/j.cub.2005.06.041.
  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong -J-J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 2008;146:623–635. doi:10.1104/pp.107.110361.
  • Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K. Functional convergence of oxylipin and ABA pathways controls stomatal closure in response to drought. Plant Physiol. 2014;164:1151–1160. doi:10.1104/pp.113.234310.
  • Santamaria JM, Davies WJ, Atkinson CJ. Stomata of micropropagated Delphinium plants respond to ABA, CO2, light and water potential, but fail to close fully. J Exp Bot. 1993;44:99–107. doi:10.1093/jxb/44.1.99.
  • Garcıa-Mata C, Lamattina L. Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol. 2002;128:790–792.
  • Huang D, Wu W, Abrams SR, Cutler AJ. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot. 2008;59:2991–3007. doi:10.1093/jxb/ern155.
  • Jager CE, Symons GM, Ross JJ, Reid JB. Do brassinosteroids mediate the water stress response? Physiol Plant. 2008;133:417–425. doi:10.1111/j.1399-3054.2008.01057.x.
  • Cornish K, Zeevaart JAD. Abscisic acid accumulation by in situ and isolated guard cells of Pisum sativum L. and Vicia faba L. in relation to water stress. Plant Physiol. 1986;81:1017–1021. doi:10.1104/pp.81.4.1017.
  • Kitsaki CK, Drossopoulos JB. Environmental effect on ABA concentration and water potential in olive leaves (Olea europaea L. cv “Koroneiki”) under non-irrigated field conditions. Environ Exp Bot. 2005;54:77–89. doi:10.1016/j.envexpbot.2004.06.002.
  • Harris MJ, Outlaw WH Jr, Mertens R, Weiler EW. Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc Natl Acad Sci U S A. 1988;85:2584–2588. doi:10.1073/pnas.85.8.2584.
  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol. 2013;23:53–57. doi:10.1016/j.cub.2012.11.022.
  • Platt JR. Strong inference. Science. 1964;146:347–353. doi:10.1126/science.146.3642.347.
  • Takemiya A, Shimazaki K. Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase. Plant Physiol. 2010;153:1555–1562. doi:10.1104/pp.110.155689.
  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–1068.
  • Loveys BR. The intracellular location of abscisic acid in stressed and non‐stressed leaf tissue. Physiol Plant. 1977;40:6–10. doi:10.1111/ppl.1977.40.issue-1.
  • Weyers JDB, Travis AJ. Selection and preparation of leaf epidermis for experiments on stomatal physiology. J Exp Bot. 1981;32:837–850.
  • Shope JC, Peak D, Mott KA. Stomatal responses to humidity in isolated epidermes. Plant Cell Environ. 2008;31:1290–1298. doi:10.1111/j.1365-3040.2008.01844.x.
  • Lee J, Bowling DJF. Effect of the mesophyll on stomatal opening in Commelina communis. J Exp Bot. 1992;43:951–957. doi:10.1093/jxb/43.7.951.
  • Lösch R. Responses of stomata to environmental factors - experiments with isolated epidermal strips of Polypodium vulgate. Oecologia. 1979;39:229–238. doi:10.1007/BF00348071.
  • Dimichele WA, Pfefferkorn HW, Gastaldo RA. Response of late carboniferous and early permian plant communities to climate change. Annu Rev Earth Planet Sci. 2001;29:461–487. doi:10.1146/annurev.earth.29.1.461.
  • McAdam SAM. Physicochemical quantification of abscisic acid levels in plant tissues with an added internal standard by ultra-performance liquid chromatography. Bio-Protocol. 2015;5:1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.