2,030
Views
26
CrossRef citations to date
0
Altmetric
Research paper

Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments

ORCID Icon, ORCID Icon, , & ORCID Icon
Article: 1663112 | Received 21 Jun 2019, Accepted 29 Aug 2019, Published online: 11 Sep 2019

References

  • Jamil A, Riaz S, Ashraf M, Foolad M. Gene expression profiling of plants under salt stress. CRC Crit Rev Plant Sci. 2011;30:1–16. doi:10.1080/07352689.2011.605739.
  • Yaish MW, Kumar PP. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci. 2015;6:348. doi:10.3389/fpls.2015.00348.
  • Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manage. 2016;183:521–529. doi:10.1016/j.jenvman.2016.09.009.
  • Ivani R, Sanaei Nejad SH, Ghahraman B, Astaraei AR, Feizi H. Role of bulk and Nanosized SiO2 to overcome salt stress during Fenugreek germination (Trigonella foenum-graceum L.). Plant Signal Behav. 2018;13:e1044190. doi:10.1080/15592324.2015.1044190.
  • Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006;11:392–397. doi:10.1016/j.tplants.2006.06.007.
  • Tubaña BS, Heckman JR. Silicon in soils and plants. In: Rodrigues F, Datnoff L, editors. Silicon and plant diseases. Springer; 2015. p. 7–51.
  • Chen D, Wang S, Yin L, Deng X. How does silicon mediate plant water uptake and loss under water deficiency? Front Plant Sci. 2018;9:281. doi:10.3389/fpls.2018.00281.
  • Sivanesan I, Son MS, Song JY, Jeong BR. Silicon supply through the subirrigation system affects growth of three chrysanthemum cultivars. Hort Environ Biotechnol. 2013;54:14–19. doi:10.1007/s13580-013-0120-0.
  • Tubana BS, Babu T, Datnoff LE. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci. 2016;181:393–411.
  • Debona D, Rodrigues FA, Datnoff LE. Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol. 2017;55:85–107. doi:10.1146/annurev-phyto-080516-035312.
  • Detmann K, Araújo W, Martins S, Fernie AR, DaMatta F. Metabolic alterations triggered by silicon nutrition: is there a signaling role for silicon? Plant Signal Behav. 2013;8:e22523. doi:10.4161/psb.22523.
  • Marodin JC, Resende JT, Morales RG, Silva ML, Galvão AG, Zanin DS. Yield of tomato fruits in relation to silicon sources and rates. Hortic Bras. 2014;32:220–224. doi:10.1590/S0102-05362014000200018.
  • Manivannan A, Ahn Y-K. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front Plant Sci. 2017;8:1346. doi:10.3389/fpls.2017.01346.
  • Meharg C, Meharg AA. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot. 2015;120:8–17. doi:10.1016/j.envexpbot.2015.07.001.
  • Zhu Z, Wei G, Li J, Qian Q, Yu J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004;167:527–533. doi:10.1016/j.plantsci.2004.04.020.
  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot. 2010;62:2001–2011. doi:10.1093/jxb/erq392.
  • Safronov O, Kreuzwieser J, Haberer G, Alyousif MS, Schulze W, Al-Harbi N, Arab L, Ache P, Stempfl T, Kruse J. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm). PLoS One. 2017;12:e0177883. doi:10.1371/journal.pone.0177883.
  • Hamad I, AbdElgawad H, Al Jaouni S, Zinta G, Asard H, Hassan S, Hegab M, Hagagy N, Selim S. Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules. 2015;20:13620–13641. doi:10.3390/molecules200813620.
  • Hadrami AE, Daayf F, Hadrami IE. Secondary metabolites of date palm. In: Date palm biotechnology. Springer Netherlands; 2011. p. 653–674. doi:10.1007/978-94-007-1318-5_31pp.
  • Al-Alawi RA, Al-Mashiqri JH, Al-Nadabi JS, Al-Shihi BI, Baqi Y. Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci. 2017;8:845. doi:10.3389/fpls.2017.00845.
  • Yaish MW. Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genet Mol Res. 2015;14:9943–9950. doi:10.4238/2015.august.19.30.
  • Al Kharusi L, Al Yahyai R, Yaish MW. Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of date palm. Agriculture. 2019;9:8. doi:10.3390/agriculture9010008.
  • Al Kharusi L, Assaha DV, Al-Yahyai R, Yaish MW. Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests. 2017;8:136. doi:10.3390/f8040136.
  • Munns R, Wallace PA, Teakle NL, Colmer TD. Measuring soluble ion concentrations (Na+, K+, Cl−) in salt-treated plants. In: Sunkar R, editor. Plant stress tolerance. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ: Humana Press; 2010. p. 371–382.
  • Brundrett MC, Enstone DE, Peterson CA. A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma. 1988;146:133–142. doi:10.1007/BF01405922.
  • Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918. doi:10.1038/nbt.2377.
  • Seitzer PM, Searle BC. Incorporating in-source fragment information improves metabolite identification accuracy in untargeted LC–MS data sets. J Proteome Res. 2019;18:791–796.
  • Benjiamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B. 1995;57:289–300.
  • Pence HE, Williams A. ChemSpider: An online chemical information resource. J Chem Educ. 2010;87:1123–1124.
  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017;46:D608–D617. doi:10.1093/nar/gkx1089.
  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34. doi:10.1093/nar/27.1.29.
  • Caraux G, Pinloche S. PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics. 2005;21:1280–1281. doi:10.1093/bioinformatics/bti141.
  • Hammer Ø, Harper D, Ryan P. Paleontological statistics software: package for education and data analysis. Palaeontol Electronica. 2001;4:1–9.
  • Oliveros JV. An interactive tool for comparing lists with venn diagrams; 2007.Available: http://bioinfogp.cnb.csic.es/tools/Venny/index.html.
  • Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem. 2005;43:729–745. doi:10.1016/j.plaphy.2005.06.007.
  • Kettle AJ, GEDYE CA, WINTERBOURN CC. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J. 1997;321:503–508. doi:10.1042/bj3210503.
  • Li X, Gruber MY, Hegedus DD, Lydiate DJ, Gao M-J. Effects of a coumarin derivative, 4-methylumbelliferone, on seed germination and seedling establishment in Arabidopsis. J Chem Ecol. 2011;37:880. doi:10.1007/s10886-011-9987-3.
  • Shimizu T, Lin F, Hasegawa M, Okada K, Nojiri H, Yamane H. Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in the biosynthesis of the flavonoid phytoalexin sakuranetin in rice. J Biol Chem. 2012; jbc. M112. 351270. doi:10.1074/jbc.M112.351270.
  • Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ. A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol. 2008;148:1603–1613. doi:10.1104/pp.108.125716.
  • Bilski P, Li M, Ehrenshaft M, Daub M, Chignell C. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol. 2000;71:129–134. doi:10.1562/0031-8655(2000)071<0129:sipvbp>2.0.co;2.
  • Kogure K, Tsuchiya K, Abe K, Akasu M, Tamaki T, Fukuzawa K, Terada H. Direct radical scavenging by the bisbenzylisoquinoline alkaloid cepharanthine. Biochim et Biophys Acta (BBA) Gen Subj. 2003;1622:1–5. doi:10.1016/S0304-4165(03)00095-3.
  • Gollapudi SR, Telikepalli H, Keshavarz-Shokri A, Vander Velde D, Mitscher LA, Glepidotin C. a minor antimicrobial bibenzyl from Glycyrrhiza lepidota. Phytochemistry. 1989;28:3556–3557. doi:10.1016/0031-9422(89)80394-2.
  • Rao MRK, Anisha G. Preliminary phytochemical and GC MS study of one medicinal plant Carissa spinarum. Indo Am J Pharamaceutical Res. 2018;8:414–421.
  • Olennikov DN, Kashchenko NI, Chirikova NK, Tankhaeva LM. Iridoids and flavonoids of four Siberian gentians: chemical profile and gastric stimulatory effect. Molecules. 2015;20:19172–19188. doi:10.3390/molecules201019172.
  • Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi:10.1186/s12870-016-0796-2.
  • Masi A, Trentin AR, Agrawal GK, Rakwal R. Gamma-glutamyl cycle in plants: a bridge connecting the environment to the plant cell? Front Plant Sci. 2015;6:252. doi:10.3389/fpls.2015.00252.
  • Lee KS, Park SN. Cytoprotective effects and mechanisms of quercetin, quercitrin and avicularin isolated from Lespedeza cuneata G. Don against ROS-induced cellular damage. J Ind Eng Chem. 2019;71:160–166.
  • Ruijters EJ, Weseler AR, Kicken C, Haenen GR, Bast A. The flavanol (-)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. Eur J Pharmacol. 2013;715:147–153. doi:10.1016/j.ejphar.2013.05.029.
  • Rapala-Kozik M. Vitamin B1 (thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. Advances in botanical research. 2011;58:37–91.
  • Lau YS, Tian XY, Huang Y, Murugan D, Achike FI, Mustafa MR. Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol. 2013;85:367–375. doi:10.1016/j.bcp.2012.11.010.
  • Augustine R, Bisht NC. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Sci Rep. 2015;5:18005. doi:10.1038/srep18005.
  • Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules. 2009;14:939–952. doi:10.3390/molecules14030939.
  • Seo S, Nakaho K, Hong SW, Takahashi H, Shigemori H, Mitsuhara I. l-Histidine induces resistance in plants to the bacterial pathogen Ralstonia solanacearum partially through the activation of ethylene signaling. Plant Cell Physiol. 2016;57:1932–1942. doi:10.1093/pcp/pcw114.
  • Stifel FB, Herman RH. Histidine metabolism. Am J Clin Nutr. 1971;24:207–217. doi:10.1093/ajcn/24.2.207.
  • Sawers G. Amino acid degradation. In: eLS. John Wiley & Sons, Ltd. 2001.
  • Xu S, Hu C, Hussain S, Tan Q, Wu S, Sun X. Metabolomics analysis reveals potential mechanisms of tolerance to excess molybdenum in soybean seedlings. Ecotoxicol Environ Saf. 2018;164:589–596. doi:10.1016/j.ecoenv.2018.08.062.
  • Gülçin İ, Elias R, Gepdiremen A, Chea A, Topal F. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: cepharanthine and fangchinoline. J Enzyme Inhib Med Chem. 2010;25:44–53. doi:10.3109/14756360902932792.
  • Thakur R, Jain M, Hruban L, Šantavý F. Terephthalic acid and its methyl esters from Zizyphus sativa. Planta Med. 1975;28:172–173. doi:10.1055/s-0028-1097847.
  • Bai R, Ma F, Liang D, Zhao X. Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. J Chem Ecol. 2009;35:488–494. doi:10.1007/s10886-009-9615-7.
  • Maher MC, Lim JY, Gunawan C, Cegelski L. Cell-based high-throughput screening identifies rifapentine as an inhibitor of amyloid and biofilm formation in Escherichia coli. ACS Infect Dis. 2015;1:460–468. doi:10.1021/acsinfecdis.5b00055.
  • Peng H, Deng Z, Chen X, Sun Y, Zhang B, Li H. Major chemical constituents and antioxidant activities of different extracts from the peduncles of Hovenia acerba Lindl. Int J Food Prop. 2018;21:2135–2155. doi:10.1080/10942912.2018.1497059.
  • Kessler G, ELIZABETH I, NEUFELD DSF, Hassid W. Metabolism of &lucuronic acid and d-galacturonic acid by phaseolus aureus seedlings; 1961;236:308–312.
  • Jain M, Nagar P, Sharma A, Batth R, Aggarwal S, Kumari S, Mustafiz A. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep. 2018;8:5451. doi:10.1038/s41598-018-23806-4.
  • Popova TN, de Carvalho MÂAP. Citrate and isocitrate in plant metabolism. Biochim et Biophys Acta (BBA) Bioenerg. 1998;1364:307–325. doi:10.1016/S0005-2728(98)00008-5.
  • Liu Y, Wu Z, Feng S, Yang X, Huang D. Hormesis of glyceollin I, an induced phytoalexin from soybean, on budding yeast chronological lifespan extension. Molecules. 2014;19:568–580. doi:10.3390/molecules19010568.
  • Kraus RJ, Ganther HE. Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980;96:1116–1122. doi:10.1016/0006-291x(80)90067-4.
  • Taguri T, Tanaka T, Kouno I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull. 2004;27:1965–1969. doi:10.1248/bpb.27.1965.
  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar C, Williams TD, Wang X. Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem. 2002;277:31994–32002. doi:10.1074/jbc.M205375200.
  • Yi H, Juergens M, Jez JM. Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants. Plant Cell. 2012; tpc. 112.098954. doi:10.1105/tpc.112.098954.
  • Chinnusamy V, Jagendorf A, Zhu J-K. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45:437–448. doi:10.2135/cropsci2005.0437.
  • Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK. Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One. 2015;10:e0138555. doi:10.1371/journal.pone.0138555.
  • Raschke M, Boycheva S, Crèvecoeur M, Nunes-Nesi A, Witt S, Fernie AR, Amrhein N, Fitzpatrick TB. Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J. 2011;66:414–432. doi:doi:10.1111/j.1365-313X.2011.04499.x.
  • Mooney S, Leuendorf J-E, Hendrickson C, Hellmann H. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009;14:329–351. doi:10.3390/molecules14010329.
  • Larson RA. Plant defenses against oxidative stress. Arch Insect Biochem Physiol. 1995;29:175–186. doi:10.1002/arch.940290207.
  • Ishitani M, Liu J, Halfter U, Kim C-S, Shi W, Zhu J-K. SOS3 function in plant salt tolerance requires N-Myristoylation and calcium binding. Plant Cell. 2000;12:1667. doi:10.2307/3871181.
  • Dewhirst RA, Fry SC. The oxidation of dehydroascorbic acid and 2, 3-diketogulonate by distinct reactive oxygen species. Biochem J. 2018;475:3451–3470. doi:10.1042/BCJ20180688.
  • Parsons HT, Fry SC. Oxidation of dehydroascorbic acid and 2, 3-diketogulonate under plant apoplastic conditions. Phytochemistry. 2012;75:41–49. doi:10.1016/j.phytochem.2011.12.005.
  • Kärkönen A, Dewhirst RA, Mackay CL, Fry SC. Metabolites of 2, 3-diketogulonate delay peroxidase action and induce non-enzymic H2O2 generation: potential roles in the plant cell wall. Arch Biochem Biophys. 2017;620:12–22. doi:10.1016/j.abb.2017.03.006.
  • Tan R, Wolfender J-L, Ma W, Zhang L, Hostettmann K. Secoiridoids and antifungal aromatic acids from gentiana algida. Phytochemistry. 1996;41:111–116. doi:10.1016/0031-9422(95)00599-4.
  • Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science. 2009;323:101–106. doi:10.1126/science.1163732.
  • Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62:3321–3338. doi:10.1093/jxb/err031.
  • Alhousari F, Greger M. Silicon and mechanisms of plant resistance to insect pests. Plants. 2018;7:33. doi:10.3390/plants7020033.
  • Muniyan R, Gurunathan J. Antimycobacterial activity of potential plant metabolites with emphasis on management of drug resistant Mycobacterium tuberculosis strains. Res J Biotechnol. 2017;12:12.
  • Gutiérrez-Coronado MA, Trejo-López C, Larqué-Saavedra A. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem. 1998;36:563–565. doi:10.1016/S0981-9428(98)80003-X.
  • Perlikowski D, Czyżniejewski M, Marczak Ł, Augustyniak A, Kosmala A. Water deficit affects primary metabolism differently in two Lolium multiflorum/Festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration. Front Plant Sci. 2016;7:1063. doi:10.3389/fpls.2016.01063.
  • Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996;14:89–97. doi:10.1016/0167-7799(96)80929-2.
  • McManus MT, Bieleski RL, Caradus JR, Barker DJ. Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environ Exp Bot. 2000;43:11–18. doi:10.1016/S0098-8472(99)00041-6.
  • Wang S, Uddin MI, Tanaka K, Yin L, Shi Z, Qi Y, Mano JI, Matsui K, Shimomura N, Sakaki T. Maintenance of chloroplast structure and function by overexpression of the rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE gene leads to enhanced salt tolerance in tobacco. Plant Physiol. 2014;165:1144–1155. doi:10.1104/pp.114.238899.
  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav. 2011;6:789–793. doi:10.4161/psb.6.6.15161.
  • Grossmann K. A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant. 1996;97:772–775. doi:10.1111/ppl.1996.97.issue-4.
  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem. 2014;80:268–277. doi:10.1016/j.plaphy.2014.04.014.
  • Mostofa MG, Ghosh A, Li Z-G, Siddiqui MN, Fujita M, Tran L-SP. Methylglyoxal–a signaling molecule in plant abiotic stress responses. Free Radical Biol Med. 2018;122:96–109. doi:10.1016/j.freeradbiomed.2018.03.009.
  • Borysiuk K, Ostaszewska-Bugajska M, Vaultier M-N, Hasenfratz-Sauder M-P, Szal B. Enhanced formation of methylglyoxal-derived advanced glycation end products in Arabidopsis under ammonium nutrition. Front Plant Sci. 2018:9. doi:10.3389/fpls.2018.00667.
  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez‐Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012;35:454–484. doi:10.1111/j.1365-3040.2011.02400.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.