1,215
Views
4
CrossRef citations to date
0
Altmetric
Perspectives

Eavesdropping on gall–plant interactions: the importance of the signaling function of induced volatiles

&
Article: 1665454 | Received 17 Jul 2019, Accepted 04 Sep 2019, Published online: 20 Sep 2019

References

  • Benelli G, Canale A, Romano D, Flamini G, Tavarini S, Martini A, Ascrizzi R, Conte G, Mele M, Angelini LG. Flower scent bouquet variation and bee pollinator visits in Stevia rebaudiana Bertoni (Asteraceae), a source of natural sweeteners. Arthropod Plant Interact. 2017;11:1–7. doi:10.1007/s11829-016-9488-y.
  • Karban R, Yang LH, Edwards KF. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett. 2014;17:44–52. doi:10.1111/ele.12205.
  • Lucas-Barbosa D, Sun P, Hakman A, van Beek TA, van Loon JJA, Dicke M. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct Ecol. 2016;30:431–441. doi:10.1111/1365-2435.12509.
  • Caruso CM, Parachnowitsch AL. Do plants eavesdrop on floral scent signals? Trends Plant Sci. 2016;21:9–15. doi:10.1016/j.tplants.2015.09.001.
  • Heil M. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol. 2014;204:297–306. doi:10.1111/nph.12977.
  • Blande JD, Glinwood R. Deciphering chemical language of plant communication. Cham. 2016. doi:10.1007/978-3-319-33498-1.
  • Ninkovic V, Markovic D, Dahlin I. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspect Plant Ecol Evol Syst. 2016;23:11–17. doi:10.1016/j.ppees.2016.09.005.
  • Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. CRC Crit Rev Plant Sci. 2006;25:417–440. doi:10.1080/07352680600899973.
  • Lucas-Barbosa D, Van Loon JJA, Dicke M. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry. 2011;72:1647–1654. doi:10.1016/j.phytochem.2011.03.013.
  • Kessler A, Halitschke R. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct Ecol. 2009;23:901–912. doi:10.1111/j.1365-2435.2009.01639.x.
  • Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol. 2008;59:41–66. doi:10.1146/annurev.arplant.59.032607.092825.
  • Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, et al. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot. 2015;115:1015–1051. doi:10.1093/aob/mcv054.
  • De Boer JG, Hordijk CA, Posthumus MA, Dicke M. Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J Chem Ecol. 2008;34:281–290. doi:10.1007/s10886-007-9405-z.
  • Baldwin IT, Kessler A, Halitschke R. Volatile signaling in plant–plant–herbivore interactions: what is real? Curr Opin Plant Biol. 2002;5:351–354. doi:10.1016/S1369-5266(02)00263-7.
  • El-Sayed AM, Knight AL, Byers JA, Judd GJR, Suckling DM. Caterpillar-induced plant volatiles attract conspecific adults in nature. Sci Rep. 2016;6:37555. doi:10.1038/srep37555.
  • Turlings TCJ, Erb M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol. 2018;63:433–452. doi:10.1146/annurev-ento-020117-043507.
  • Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One. 2012;7:e43607. doi:10.1371/journal.pone.0043607.
  • Cozzolino S, Fineschi S, Litto M, Scopece G, Trunschke J, Schiestl FP. Herbivory increases fruit set in Silene latifolia: A consequence of induced pollinator-attracting floral volatiles? J Chem Ecol. 2015;41:622–630. doi:10.1007/s10886-015-0597-3.
  • Benevenuto RF, Hegland SJ, Töpper JP, Rydgren K, Moe SR, Rodriguez-Saona C, Seldal T. Multiannual effects of induced plant defenses: are defended plants good or bad neighbors? Ecol Evol. 2018;8:8940–8950. doi:10.1002/ece3.4365.
  • Raman A. Insect-induced plant galls of India: unresolved questions. Curr Sci. 2007;92:748–757.
  • Shorthouse JD, Wool D, Raman A. Gall-inducing insects – nature’s most sophisticated herbivores. Basic Appl Ecol. 2005;6:407–411. doi:10.1016/j.baae.2005.07.001.
  • Rozdilsky ID, Stone L, Solow A. The effects of interaction compartments on stability for competitive systems. J Theor Biol. 2004;227:277–282. doi:10.1016/j.jtbi.2003.11.007.
  • Stone GN, Schönrogge K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 2003;18:512–522. doi:10.1016/S0169-5347(03)00247-7.
  • Price PW, Fernandes GW, Waring GL. Hypotheses on the adaptive nature of galls. Proc Entomol Soc Washingt. 1986;16:15–24.
  • Carneiro RGS, Isaias RMS, Moreira ASFP, Oliveira DC. Reacquisition of new meristematic sites determines the development of a new organ, the cecidomyiidae gall on Copaifera langsdorffii Desf. (Fabaceae). Front Plant Sci. 2017:8. doi:10.3389/fpls.2017.01622.
  • Ferreira BG, Isaias RMDS. Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora - Morphol Distrib Funct Ecol Plants. 2014;209:391–400. doi:10.1016/j.flora.2014.06.004.
  • Raman A. Morphogenesis of insect-induced plant galls: facts and questions. Flora - Morphol Distrib Funct Ecol Plants. 2011;206:517–533. doi:10.1016/j.flora.2010.08.004.
  • Bronner R. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse J, Rohfrtisch O editors. Biology of insect-induced galls. Oxford: Oxford University Press; 1992. p. 118–140.
  • Ferreira BG, Avritzer SC, Isaias RMS. Totipotent nutritive cells and indeterminate growth in galls of Ditylenchus gallaeformans (Nematoda) on reproductive apices of Miconia. Flora. 2017;227:36–45. doi:10.1016/j.flora.2016.12.008.
  • Nyman T, Julkunen-Tiitto R. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci. 2000;97:13184–13187. doi:10.1073/pnas.230294097.
  • Kuster VC, Costa Rezende U, Fernandes Cardoso JC, Dos Santos Isaias RM, Coelho de Oliveira D. How galling organisms manipulate the secondary metabolites in the host plant tissues?: A histochemical overview in neotropical gall systems. In: Merillon J, Ramawat K, editors. Co-evolution of secondary metabolites. 2019; p. 1–20. doi:10.1007/978-3-319-76887-8_29-1.
  • Allison SD, Schultz JC. Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol. 2005;31:151–166.
  • Rostás M, Maag D, Ikegami M, Inbar M. Gall volatiles defend aphids against a browsing mammal. BMC Evol Biol. 2013;13:193. doi:10.1186/1471-2148-13-193.
  • Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K. Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS One. 2008;3:1–10. doi:10.1371/journal.pone.0001904.
  • Kanchiswamya CN, Maffeib ME. Calcium signaling preceding the emission of plant volatiles in plant-insect interactions. J Indian Inst Sci. 2015;95:15–23.
  • Aljbory Z, Chen M-S. Indirect plant defense against insect herbivores: a review. Insect Sci. 2018;25:2–23. doi:10.1111/1744-7917.12436.
  • Tooker JF, Rohr JR, Abrahamson WG, De Moraes CM. Gall insects can avoid and alter indirect plant defenses. New Phytol. 2008;178:657–671. doi:10.1111/j.1469-8137.2008.02392.x.
  • Weis AE, Walton R, Crego CL. Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol. 1988;33:467–486. doi:10.1146/annurev.en.33.010188.002343.
  • Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol. 2016;84:103–113. doi:10.1016/j.jinsphys.2015.11.012.
  • Speed MP, Fenton A, Jones MG, Ruxton GD, Brockhurst MA. Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol. 2015;208:1251–1263. doi:10.1111/nph.13560.
  • Karban R, Agrawal AA, Thaler JS, Adler LS. Induced plant responses and information content about risk of herbivory. Trends Ecol Evol. 1999;14:443–447. doi:10.1016/S0169-5347(99)01678-X.
  • Padilla DK, Adolph SC. Plastic inducible morphologies are not always adaptive: the importance of time delays in a stochastic environment. Evol Ecol. 1996;10:105–117. doi:10.1007/BF01239351.
  • Backmann P, Grimm V, Jetschke G, Lin Y, Vos M, Baldwin IT, van Dam NM. Delayed chemical defense: timely expulsion of herbivores can reduce competition with neighboring plants. Am Nat. 2019;193:125–139. doi:10.1086/700577.
  • Niinemets Ü, Kännaste A, Copolovici L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci. 2013;4:1–15. doi:10.3389/fpls.2013.00262.
  • Albert S, Padhiar A, Gandhi D, Nityanand P. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Rev Bras Botânica. 2011;34:343–358. doi:10.1590/S0100-84042011000300009.
  • Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci. 2013;110:16663–16668. doi:10.1073/pnas.1220219110.
  • Aranda-Rickert A, Rothen C, Diez P, González AM, Marazzi B. Sugary secretions of wasp galls: a want-to-be extrafloral nectar? Ann Bot. 2017;120:765–774. doi:10.1093/aob/mcx075.
  • Oliveira DC, Mendonça MS, Moreira ASFP, Lemos-Filho JP, Isaias RMS. Water stress and phenological synchronism between Copaifera langsdorffii (Fabaceae) and multiple galling insects: formation of seasonal patterns. J Plant Interact. 2013;8:225–233. doi:10.1080/17429145.2012.705339.
  • Dorchin N, Hoffman JH, Stirk WA, Novãk O, Strnad M, Van Staden J. Sexually dimorphic gall structures correspond to differential phytohormone contents in male and female wasp larvae. Physiol Entomol. 2009;34:359–369. doi:10.1111/j.1365-3032.2009.00702.x.
  • Uesugi A, Morrell K, Poelman EH, Raaijmakers CE, Kessler A. Modification of plant-induced responses by an insect ecosystem engineer influences the colonization behaviour of subsequent shelter-users. J Ecol. 2016;104:1096–1105. doi:10.1111/1365-2745.12587.
  • Jiang Y, Veromann-Jürgenson -L-L, Ye J, Niinemets Ü. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. Plant Cell Environ. 2018;41:160–175. doi:10.1111/pce.13050.
  • Besten MA, Nunes DS, Granato D, Sens SL, Wisniewski A Jr, Simionatto EL, Riva-Scharf D. Volatile components from galls induced by Baccharopelma dracunculifoliae (Hemiptera: psyllidae) on leaves of Baccharis dracunculifolia (Asteraceae). Quim Nova. 2014. doi:10.5935/0100-4042.20140288.
  • Rand K, Bar E, Ari MB, Davidovich-Rikanati R, Dudareva N, Inbar M, Lewinsohn E. Differences in monoterpene biosynthesis and accumulation in Pistacia palaestina leaves and aphid-induced galls. J Chem Ecol. 2017;43:143–152. doi:10.1007/s10886-016-0817-5.
  • Stireman JO, Cipollini D. Stealth tactics of galling parasites and their potential indirect effects. New Phytol. 2008;178:462–465. doi:10.1111/j.1469-8137.2008.02455.x.
  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 2008;146:818–824. doi:10.1104/pp.107.113027.
  • Kessler A. Defensive function of herbivore-induced plant volatile emissions in nature. Science (80-). 2001;291:2141–2144. doi:10.1126/science.291.5511.2141.
  • Holopainen JK, Blande JD. Where do herbivore-induced plant volatiles go? Front Plant Sci. 2013;4:1–13. doi:10.3389/fpls.2013.00185.
  • Mani MS. Ecology of Plant Galls. Dordrecht: Springer Netherlands; 1964. doi:10.1007/978-94-017-6230-4.
  • Pfeffer L, Rezende UC, Barônio GJ, de Oliveira DC. Building two houses on a singles host plant: galling insect synchronizes its life cycle with plant phenology. Oecologia Aust. 2018;22:438–448. doi:10.4257/oeco.2018.2204.07.
  • Silva AFDM, Kuster VC, Rezende UC, de Oliveira DC. The early developmental stages of gall-inducing insects define final gall structural and histochemical profiles: the case of Bystracoccus mataybae galls on Matayba guianensis. Botany. 2019;97:427–438. doi:10.1139/cjb-2019-0017.
  • Burkle LA, Runyon JB. The smell of environmental change: using floral scent to explain shifts in pollinator attraction. Appl Plant Sci. 2017;5:1600123. doi:10.3732/apps.1600123.
  • Li T, Blande JD, Holopainen JK. Atmospheric transformation of plant volatiles disrupts host plant finding. Sci Rep. 2016;6:33851. doi:10.1038/srep33851.
  • Borges RM. The galling truth: limited knowledge of gall-associated volatiles in multitrophic interactions. Front Plant Sci. 2018:9. doi:10.3389/fpls.2018.01139.
  • Giron D, Huguet E, Stone GN, Body M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol. 2016;84:70–89. doi:10.1016/j.jinsphys.2015.12.009.
  • Tooker JF, De Moraes CM. Gall insects and indirect plant defenses: A case of active manipulation? Plant Signal Behav. 2008;3:503–504. doi:10.4161/psb.3.7.6184.
  • Helms AM, De Moraes CM, Mescher MC, Tooker JF. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biol. 2014;14:173. doi:10.1186/1471-2229-14-173.
  • Tooker JF, Crumrin AL, Hanks LM. Plant volatiles are behavioral cues for adult females of the gall wasp Antistrophus rufus. Chemoecology. 2005;15:85–88. doi:10.1007/s00049-005-0298-4.
  • Tooker JF, Koenig WA, Hanks LM. Altered host plant volatiles are proxies for sex pheromones in the gall wasp Antistrophus rufus. Proc Natl Acad Sci. 2002;99:15486–15491. doi:10.1073/pnas.252626799.
  • Helms AM, De Moraes CM, Tooker JF, Mescher MC. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Natl Acad Sci. 2013;110:199–204. doi:10.1073/pnas.1218606110.
  • Augustyn WA, Botha BM, Combrinck S, Maree JE, Du Plooy GW. Effect of secondary metabolites on gall fly infestation of mango leaves. Flavour Fragr J. 2010;25:223–229. doi:10.1002/ffj.1999.
  • Tooker JF, Hanks LM. Tritrophic interactions and reproductive fitness of the prairie perennial Silphium laciniatum Gillette (Asteraceae). Environ Entomol. 2006;35:537–545. doi:10.1603/0046-225X-35.2.537.
  • Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends Plant Sci. 2010;15:167–175. doi:10.1016/j.tplants.2009.12.002.
  • Li XQ, Liu YZ, Guo WF, Solanki MK, Yang ZD, Xiang Y, Ma ZC, Wen YG. The gall wasp Leptocybe invasa (Hymenoptera: eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling. Tree Physiol. 2017;37:1208–1217. doi:10.1093/treephys/tpx098.
  • Kotze MJ, Jürgens A, Johnson SD, Hoffmann JH. Volatiles associated with different flower stages and leaves of Acacia cyclops and their potential role as host attractants for Dasineura dielsi (Diptera: cecidomyiidae). South African J Bot. 2010;76:701–709. doi:10.1016/j.sajb.2010.07.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.