799
Views
7
CrossRef citations to date
0
Altmetric
Short communication

Nitric oxide and light co-regulate glycine betaine homeostasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity

, &
Article: 1666656 | Received 13 Aug 2019, Accepted 05 Sep 2019, Published online: 17 Sep 2019

References

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SH. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol. 2015;14:1–7. doi:10.1007/s11157-015-9372-8.
  • Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. 2014;2014:Article ID 701596. doi:10.1155/2014/701596.
  • Zhang L, Zhao Y, Zhai Y, Gao M, Zhang X, Wang K, Nan W, Liu J. Effects of exogenous nitric oxide on glycine betaine in maize (Zea mays) seedlings under drought stress. Park J Bot. 2012;44:1837–1844.
  • Chen THH, Murata N. Glycine-betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 2008;13(9):499–505. doi:10.1016/j.tplants.2008.06.007.
  • Parihar P, Singh S, Singh R, Singh VP, Prasad SH. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res. 2016;22:4056–4075. doi:10.1007/s11356-014-3739-1.
  • Ahmad R, Lim CJ, Kwon SY. Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep. 2013;7:49–57. doi:10.1007/s11816-012-0266-8.
  • Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 2002;25(2):163–171. doi:10.1046/j.0016-8025.2001.00790.
  • Yadu B, Chandrakar V, Meena RK, Keshavkant S. Glycine beaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L. South African J Bot. 2017;111(1):68–75. doi:10.1016/j.sajb.2017.03.023.
  • Faridduddin Q, Varshney P, Yusuf M, Ali A, Ahmad A. Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress. 2013;7:8–18.
  • Chen THH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opinion Plant Biol. 2002;5:250–257. doi:10.1016/S1369-5266(02)00255-8.
  • Mitsuya S, Kozaki K, Takabe T. Tissue localization of the glycine betaine biosynthetic enzymes in barley leaves. Plant Prod Sci. 2013;16(2):117–122. doi:doi:10.1626/pps.16.117.
  • Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B. Improved stress tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot. 2000;51(343):177–185. doi:10.1093/jexbot/51.343.177.
  • Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycine betaine non-accumulator, and possible localization of its protein in peroxisomes. The Plant J. 1997;11(5):1115–1120. doi:10.1046/j.1365-313X.1997.11051115.
  • Munawar A, Akram NA, Ahmad A, Ashraf M. Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci Hortic. 2019;254:7–13. doi:10.1016/j.scienta.2019.04.072.
  • Tian F, Wanga W, Lianga C, Wanga X, Wanga G, Wanga W. Over-accumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. Crop J. 2016;5(1):73–82. doi:10.1016/j.cj.2016.05.008.
  • Zhang M, Zhang H, Li H, Lai F, Li X, Tang Y, Min T, Wu H. Antioxidant mechanism of betaine without free radical scavenging ability. J Agric Food Chem. 2016;64(42):7921–7930. doi:10.1021/acs.jafc.6b03592.
  • Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Huner NPA. Stress-related hormones and glycine betaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res. 2015;126(2–3):221–235. doi:10.1007/s11120-015-0125-x.
  • Wani SH, Singh NB, Haribhushan A, Mir JI. Compatible solute engineering in plants for abiotic stress tolerance – role of glycine betaine. Curr Genom. 2013;14:157–165. doi:10.2174/1389202911314030001.
  • Cruz FJR, Castro GLS, Silva-Junior DD, Festucci-Buselli RA, Pinheiro HA. Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica. 2013;51(1):102–108. doi:10.1007/s11099-013-0004-7.
  • Chen THH, Murata N. Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 2011;34:1–20. doi:10.1111/j.1365-3040.2010.02232.x.
  • Giri J. Glycine betaine and abiotic stress tolerance in plants. Plant Signal Behav. 2011;6(11):1746–1751. doi:10.4161/psb.6.11.17801.
  • Ahmad R, Kim YH, Kim MD, Kwon SY, Cho K, Lee HS, Kwak SS. Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant. 2010;138(4):520–533. doi:10.1111/j.1399-3054.2010.01348.x.
  • Sakamoto A, Murata A, Murata N. Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol Bio. 1998;38(6):1011–1019. Erratum in: Plant Mol Bio. 1999; 40(1):195. Murata A. doi:10.1023/A:1006095015717.
  • Zhao XX, Ma QQ, Liang C, Fang Y, Wang YQ, Wang W. Effect of glycine betaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol Plantarum. 2007;51(3):584–588. doi:10.1007/s10535-007-0128-3.
  • Cuin TA, Shabala S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol. 2005;46(12):1924–1933. doi:10.1093/pcp/pci205.
  • Kader MA, Lindberg S. Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav. 2010;5(3):233–238. doi:10.4161/psb.5.3.10740.
  • Singh N, Bhatla SC. Signaling through reactive oxygen and nitrogen species is differentially modulated in sunflower seedling root and cotyledon in response to various nitric oxide donors and scavengers. Plant Signal Behav. 2017;12(9):e1365214. doi:10.1080/15592324.2017.1365214.
  • Valadez-Bustos MG, Aguado-Santacruz GA, Tiessen-Favier A, Robledo-Paz A, Mu~noz-Orozco A, Rasc_on-Cruz Q, Santacruz-Varela A. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems. Anal Biochem. 2016;498:47–52. doi:10.1016/j.ab.2015.12.015.
  • Grieve CM, Grattan SR. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 1983;70:303–307. doi:10.1007/BF02374789.
  • Arakawa K, Takabe T, Sugiyama T, Akazawa T. Purification of betaine-aldehyde dehydrogenase from spinach leaves and preparation of its antibody. J Biochem. 1987;101:1485–1488. doi:10.1093/oxfordjournals.jbchem.a122019.
  • Weigel P, Weretilnyk EA, Hanson AD. Betaine aldehyde oxidation by spinach chloroplast. Plant Physiol. 1986;82:753–759. doi:10.1104/pp.82.3.753.
  • Annunziata MG, Ciarmiello LF, Woodrow P, Aversana ED, Carillo P. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front Plant Sci. 2019:10. doi:10.3389/fpls.2019.00230.
  • Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exper Bot. 2005;59(2007):206–216. doi:10.1016/j.envexpbot.2005.12.006.
  • Ishitani M, Nakamura M, Han SY, Takabe T. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress. Plant Mol Bio. 1995;27(2):307–315. doi:10.1007/BF00020185.
  • Ullah S, Kolo Z, Egbichi I, Keyster M, Ludidi N. Nitric oxide influences glycine betaine content and ascorbate peroxidase activity in maize. South African J Bot. 2016;105:218–225. doi:10.1016/j.sajb.2016.04.003.
  • Nazia K, Khalid N, Khalid H, Khizar H, Bhatti Ejaz HS, Aqsa T. Effect of exogenous applications of glycine betaine on growth and gaseous exchange attributes of two maize (Zea mays) cultivars under saline conditions. World Applied Sci J. 2014;29(12):1559–1565. doi:10.5829/idosi.wasj.2014.29.12.13971.
  • Zhang LX, Li SX, Liang ZS. Differential plant growth and osmotic effects of two maize (Zea mays L.) cultivars to exogenous glycine betaine application under drought stress. Plant Growth Regul. 2009;58(3):297–307. doi:10.1007/s10725-009-9379-7.
  • Zhang LX, Li SX, Zhang H, Liang ZS. Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J Argon Crop Sci. 2007;193:387–397. doi:10.1111/j.1439-037X.2007.00276.x.
  • Gupta N, Thind SK, Bains NS. Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul. 2014;72(3):221–228. doi:10.1007/s10725-013-9853-0.
  • Singh N, Bhatla SC. Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. Plant Signal Behav. 2018;13(5):e1473683. doi:10.1080/15592324.2018.1473683.
  • Singh N, Bhatla SC. Hemoglobin as a probe for estimation of nitric oxide emission from plant tissues. Plant Methods. 2019;15:39. doi:10.1186/s13007-019-0425-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.