1,102
Views
31
CrossRef citations to date
0
Altmetric
Short communication

Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress

, ORCID Icon &
Article: 1667730 | Received 08 Aug 2019, Accepted 10 Sep 2019, Published online: 17 Sep 2019

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Knocz C, Carrasco P, Tiburcio AF. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231:1–6. PMID:20221631. doi:10.1007/s00425-010-1130-0.
  • Tiburcio A, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 2014;240:1–18. PMID:24659098. doi:10.1007/s00425-014-2055-9.
  • Alcázar R, Tiburcio AF. Polyamine metabolism and abiotic stress tolerance in plants. In: Ramakrishna A, Gill SS, editors. Metabolic adaptations in plants during abiotic stress. CRC Press; 2018. p. 203–212. doi:10.1201/b22206.
  • Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;9:1945. PMID:30687350. doi:10.3389/fpls.2018.01945.
  • Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34:35–45. PMID:17356805. doi:10.1007/s00726-007-0501-8.
  • Hussain SS, Ali M, Ahmad M, Siddique KH. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv. 2011;29:300–311. PMID:21241790. doi:10.1016/j.biotechadv.2011.01.003.
  • Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci. 2014;5:175. PMID:24847338. doi:10.3389/fpls.2014.00175.
  • Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul. 2001;34:135–148. doi:10.1023/A:1013343106574.
  • Edreva AM, Velikova VB, Tsonev TD. Phenylamides in plants. Russ J Plant Physiol. 2007;54:287–301. doi:10.1134/S1021443707030016.
  • Bassard J-E, Ullmann P, Bernier F, Werck-Reichhart D. Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry. 2010;71:1808–1824. PMID:20800856. doi:10.1016/j.phytochem.2010.08.003.
  • Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines: essential factors for growth and survival. Planta. 2008;228:367–381. PMID:18594857. doi:10.1007/s00425-008-0772-7.
  • Wuddineh W, Minocha R, Minocha SC. Polyamines in the context of metabolic networks. Methods Mol Biol. 2018;1694:1–23. PMID:29080151. doi:10.1007/978-1-4939-7398-9_1.
  • Pál M, Szalai G, Janda T. Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23. PMID:26089148. doi:10.1016/j.plantsci.2015.05.003.
  • Kusano T, Sagor GHM, Berberich T. Molecules for sensing polyamines and transducing their action in plants. Methods Mol Biol. 2018;1694:25–35. PMID:29080152. doi:10.1007/978-1-4939-7398-9_2.
  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, Yun B-W. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot. 2019;161:120–133. doi:10.1016/j.envexpbot.2019.02.003.
  • David A, Yadav S, Bhatla SC. Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. Physiol Plant. 2010;140:342–354. doi:10.1111/j.1399-3054.2010.01408.x.
  • Singh N, Bhatla SC. Signaling through reactive oxygen and nitrogen species is differentially modulated in sunflower seedling root and cotyledon in response to various nitric oxide donors and scavengers. Plant Signal Behav. 2017;12:e1365214. PMID:28862537. doi:10.1080/15592324.2017.1365214.
  • Maiale S, Sánchez DH, Guirado A, Vidal A, Ruiz OA. Spermine accumulation under salt stress. J Plant Physiol. 2004;161:35–42. PMID:15002662. doi:10.1078/0176-1617-01167.
  • Roychoudhary A, Basu S, Sengupta DN. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varities of indica rice differing in their level of salt tolerance. J Plant Physiol. 2011;168:317–328. PMID:20728960. doi:10.1016/j.jplph.2010.07.009.
  • Do PT, Drechsel O, Heyer AG, Hincha DK, Zuther E. Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front Plant Sci. 2014;5:182. PMID:24847340. doi:10.3389/fpls.2014.00182.
  • Li S, Jin H, Zhang Q. The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Front Plant Sci. 2016;7:1221. PMID:27582752. doi:10.3389/fpls.2016.01221.
  • Takahashi T, Kakehi J. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot. 2010;105:1–6. PMID:19828463. doi:10.1093/aob/mcp259.
  • Seifi HS, Shelp BJ. Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front Plant Sci. 2019;10:117. PMID:30800140. doi:10.3389/fpls.2019.00117.
  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T. Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci. 2015;6:827. PMID:26528300. doi:10.3389/fpls.2015.00827.
  • Tun NN, Santa-Catarina C, Begum T, Silveria V, Handro W, Floh EI, Scherer GFE. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 2006;47:346–354. PMID:16415068. doi:10.1093/pcp/pci252.
  • Wimalasekera R, Tebartz F, Scherer GFE. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181:593–603. PMID:21893256. doi:10.1016/j.plantsci.2011.04.002.
  • Fan H-F, Dua C-X, Guo S-R. Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exper Bot. 2017;86:52–59. doi:10.1016/j.envexpbot.2010.09.007.
  • Agurla S, Gayatri G, Raghavendra AS. Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma. 2018;255:153–162. PMID:28699025. doi:10.1007/s00709-017-1139-3.
  • Wang H, Huang J, Liang W, Liang X, Bi Y. Involvement of putrescine and nitric oxide in aluminum tolerance by modulating citrate secretion from roots of red kidney bean. Plant Soil. 2013;366:479–490. doi:10.1007/s11104-012-1447-5.
  • Wang Y, Luo Z, Maoa L, Ying T. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit. Food Chem. 2016;197:333–339. doi:10.1016/j.foodchem.2015.10.118.
  • Yamasaki H, Cohen MF. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci. 2006;11:522–524. PMID:17035070. doi:10.1016/j.tplants.2006.09.009.
  • Choi SW, Lee SK, Kim EO, Oh JH, Yoon KS, Parris N, Hicks KB, Moreau RA. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. J Agric Food Chem. 2007;55:3920−5. PMID:17397179. doi:10.1021/jf0635154.
  • Liu JH, Inoue H, Moriguchi T. Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environ Exp Bot. 2008;62:28–35. doi:10.1016/j.envexpbot.2007.07.002.
  • Liu JH, Nakajima I, Moriguchi T. Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biol Plant. 2011;55:340–344. doi:10.1007/s10535-011-0050-6.
  • Romero FM, Maiale AJ, Rossi FR, Marina M, Ruíz OA, Gárriz A. Polyamine metabolism responses to biotic and abiotic stress. Methods Mol Biol. 2018;1694:37–49. PMID:29080153. doi:10.1007/978-1-4939-7398-9_3.
  • Singh P, Basu S, Kumar G. Polyamines metabolism: a way ahead for abiotic atress tolerance in crop plants. In: SH W, editor. Biochemical, physiological and molecular avenues for combating abiotic stress in plants. 1st ed. Academic Press; 2018. p. 39–55. doi:10.1016/B978-0-12-813066-7.00003-6.
  • Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signal Behav. 2010;5:26–33. PMID:20592804. doi:10.4161/psb.5.1.10291.
  • Marco F, Bitrián M, Carrasco P, Alcázar R, Tiburcio AF. Polyamine biosynthesis engineering as a tool to improve plant resistance to abiotic stress. In: Jaiwal PK, Singh RP, Dhankher OP, editors. Genetic manipulation in plants for mitigation of climate change. Cham: Springer; 2015. p. 103–116. doi:10.1007/978-81-322-2662-8_5.
  • Khare T, Srivastav A, Shaikh S, Kumar V. Polyamines and their metabolic engineering for plant salinity stress tolerance. In: Kumar V, Wani S, Suprasanna P, Tran LS, editors. Salinity responses and tolerance in plants. Vol. 1. Cham: Springer; 2018. p. 339–358. doi:10.1007/978-3-319-75671-4_13.
  • Matsumoto T, Nimura Y, Furuta T, Hayakawa N, Asai M, Kurokawa Y, Hattori T, Iyomasa Y. Some properties of amine oxidase from soybean seedlings. Nagoya J Med Sci. 1984;46:87–94. PMID: 6539854.
  • Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot. 2010;61:2719–2733. PMID:20472577. doi:10.1093/jxb/erq118.
  • Islam MA, Pang J-H, Meng F-W, Li Y-W, Xu N, Yang C, Liu J. Putrescine, spermidine, and spermine play distinct roles in rice salt tolerance. JIA. 2019;18:2–14. doi:10.1016/S2095-3119(19)62705-X.
  • Sagor GHM, Zhang S, Kojima S, Simm S, Berberich T, Kusano T. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression. Front Plant Sci. 2016;7:214. PMID:26973665. doi:10.3389/fpls.2016.00214.
  • Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gomez-Cadenas A, Tiburcio AF, et al. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environ. 2017;40:527–542. PMID:26791972. doi:10.1111/pce.12714.
  • Tavladoraki P, Cona A, Angelini R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci. 2016;7:824. PMID:27446096. doi:10.3389/fpls.2016.00824.
  • Wang W, Paschalidis K, Feng J-C, Song J, Liu J-H. Polyamine catabolism in plants: a universal process with diverse functions. Front Plant Sci. 2019;10:561. PMID:31134113. doi:10.3389/fpls.2019.00561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.