943
Views
2
CrossRef citations to date
0
Altmetric
Short communication

Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar

ORCID Icon, , & ORCID Icon
Article: 1668233 | Received 26 Aug 2019, Accepted 11 Sep 2019, Published online: 18 Sep 2019

References

  • Unsicker SB, Kunert G, Gershenzon J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol. 2009;12:1–3.
  • Pichersky E, Noel J, Dudareva N. Biosynthesis of plant volatiles: nature diversity and ingenuity. Science. 2006;311:808–811. doi:10.1126/science.1118510.
  • Irmisch S, Mccormick C, Boeckler GA, Schmidt A, Reichelt M, Schneider B, Block K, Schnitzler J, Gershenzon J, Unsicker SB, et al. Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell. 2013;25:4737–4754. doi:10.1105/tpc.113.118265.
  • Günther J, Lackus ND, Schmidt A, Huber M, Stödler H-J, Reichelt M, Gershenzon J, Köllner TG. Separate pathways contribute to the herbivore-induced formation of 2-phenylethanol in poplar. Plant Physiol. 2019;180:767–782. doi:10.1104/pp.19.00059.
  • McCormick AC, Boeckler GA, Köllner TG, Gershenzon J, Unsicker SB. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biol. 2014;14:304. doi:10.1186/s12870-014-0304-5.
  • Danner H, Boeckler GA, Irmisch S, Yuan JS, Chen F, Gershenzon J, Unsicker SB, Köllner TG. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa. Phytochemistry. 2011;72:897–908. doi:10.1016/j.phytochem.2011.03.014.
  • Torrens-Spence MP, Pluskal T, Li FS, Carballo V, Weng JK. Complete pathway elucidation and heterologous reconstitution of Rhodiola salidroside biosynthesis. Mol Plant. 2017;11:205–217. doi:10.1016/j.molp.2017.12.007.
  • Facchini PJ, Huber-Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry. 2000;54:121–138. doi:10.1016/s0031-9422(00)00050-9.
  • Hazelwood LA, Daran JM, Van Maris AJA, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–2266. doi:10.1128/AEM.02625-07.
  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot. 2010;61:1111–1123. doi:10.1093/jxb/erp390.
  • Hirata H, Ohnishi T, Tomida K, Ishida H, Kanda M, Sakai M, Yoshimura J, Suzuki H, Ishikawa T, Dohra H, et al. Seasonal induction of alternative principal pathway for rose flower scent. Sci Rep. 2016;6:20234. doi:10.1038/srep20234.
  • Pare PW, Tumlinson JH. Update on plant-insect interactions plant volatiles as a defense against insect herbivores. Plant Physiol. 1999;121:325–331.