1,316
Views
0
CrossRef citations to date
0
Altmetric
Short communication

Effect of D-ring C-3’ methylation of strigolactone analogs on their transcription regulating activity in rice

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1668234 | Received 28 Aug 2019, Accepted 11 Sep 2019, Published online: 25 Sep 2019

References

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, et al. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 2011;155:1–5. PMID: 21119044. doi:10.1104/pp.110.166645.
  • Kapulnik Y, Koltai H. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol. 2014;166:560–569. PMID: 25037210. doi:10.1104/pp.114.244939.
  • Decker EL, Alder A, Hunn S, Ferguson J, Lehtonen MT, Scheler B, Kerres KL, Wiedemann G, Safavi-Rizi V, Nordzieke S, et al. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol. 2017;216:455–468. PMID: 28262967. doi:10.1111/nph.14506.
  • Cook CE, Whichard LP, Turner B, Wall ME. Germination of witchweed (Striga Lutea Lour)-isolation and properties of a potent stimulant. Science. 1966;154:1189–1193. PMID: 17780042. doi:10.1126/science.154.3753.1189.
  • Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827. PMID: 15944706. doi:10.1038/nature03608.
  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol. 2004;14:1232–1238. PMID: 15268852. doi:10.1016/j.cub.2004.06.061.
  • Zou JH, Zhang SY, Zhang WP, Li G, Chen ZX, Zhai WX, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 2006;48:687–696. PMID: 17092317. doi:10.1111/j.1365-313X.2006.02916.x.
  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 2007;51:1019–1029. PMID: 17655651. doi:10.1111/j.1365-313X.2007.03210.x.
  • Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ. The decreased apical dominance 1/petunia hybrida carotenoid cleavage dioxygenase8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell. 2005;17:746–759. PMID: 15705953. doi:10.1105/tpc.104.027714.
  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell. 2005;8:443–449. PMID: 15737939. doi:10.1016/j.devcel.2005.01.009.
  • Zhang YX, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10:1028–1033. PMID: 25344813. doi:10.1038/nchembio.1660.
  • Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K, Seto Y, Dun EA, Cremer JE, Kerr SC. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci. 2016;113:6301–6306. PMID: 27194725. doi:10.1073/pnas.1601729113.
  • Jia KP, Baz L, Al-Babili S. From carotenoids to strigolactones. J Exp Bot. 2018;69:2189–2204. PMID: 29253188. doi:10.1093/jxb/erx476.
  • Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–186. PMID: 25621512. doi:10.1146/annurev-arplant-043014-114759.
  • de Saint Germain A, Bonhomme S, Boyer FD, Rameau C. Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol. 2013;16:583–589. PMID: 23830996. doi:10.1016/j.pbi.2013.06.007.
  • Shabek N, Ticchiarelli F, Mao H, Hinds TR, Leyser O, Zheng N. Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature. 2018;563:652–656. PMID: 30464344. doi:10.1038/s41586-018-0743-5.
  • Yao RF, Ming ZH, Yan LM, Li SH, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 2016;536:469–473. doi:10.1038/nature19073.
  • Zhou F, Lin QB, Zhu LH, Ren YL, Zhou KN, Shabek N, Wu F, Mao H, Dong W, Gan L, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504:406–410. PMCID: PMC4096652. doi:10.1038/nature12878.
  • Soundappan I, Bennett T, Morffy N, Liang YY, Stang JP, Abbas A, Leyser O, Nelson DC. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell. 2015;27:3143–3159. PMCID: PMC4682302. doi:10.1105/tpc.15.00562.
  • Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem. 2009;73:2460–2465. PMID: 19897913. doi:10.1271/bbb.90443.
  • Boyer FD, de Saint Germain A, Pouvreau JB, Clavé G, Pillot JP, Roux A, Rasmussen A, Depuydt S, Lauressergues D, Frei Dit Frey N, et al. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol Plant. 2014;7:675–690. PMID: 24249726. doi:10.1093/mp/sst163.
  • Jamil M, Kountche BA, Haider I, Wang JY, Aldossary F, Zarban RA, Jia KP, Yonli D. Methylation at the C-3′ in D-ring of strigolactone analogs reduces biological activity in root parasitic plants and rice. Front Plant Sci. 2019;10:353. PMCID: PMC6455008. doi:10.3389/fpls.2019.00353.
  • Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018;18:174. PMID: 30157762. doi:10.1186/s12870-018-1387-1.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. PMID: 11846609. doi:10.1006/meth.2001.1262.
  • Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, Ntui VO, Guo X, Charnikhova T, Al-Babili S, et al. The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot. 2018;69:2403–2414. PMID: 29538660. doi:10.1093/jxb/ery089.
  • Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature. 2009;459:1071–1078. PMID: 19553990. doi:10.1038/nature08122.
  • Jia K-P, Li C, Bouwmeester HJ, Al-Babili S. Strigolactone biosynthesis and signal transduction. In: Koltai H, Prandi C, editors. Strigolactones - biology and applications. Cham, Switzerland: Springer Nature Switzerland AG; 2019. p. 1–46. doi:10.1007/978-3-030-12153-2.