2,333
Views
13
CrossRef citations to date
0
Altmetric
Review

Biochemical mechanisms regulating salt tolerance in sunflower

&
Article: 1670597 | Received 08 Aug 2019, Accepted 17 Sep 2019, Published online: 30 Sep 2019

References

  • Keisham M, Mukherjee S, Bhatla SC. Mechanisms of sodium transport in plants-progresses and challenges. Int J Mol Sci. 2018;19(3):1. doi:10.3390/ijms19030647.
  • Singh N, Bhatla SC. Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. Plant Signal Behav. 2018;13:e1473683. doi:10.1080/15592324.2018.1473683.
  • Ebrahimi R, Bhatla SC. Effect of sodium chloride levels on growth, water status, uptake, transport and accumulation pattern of sodium and chloride ions in young sunflower plants. Commun Soil Sci Plan. 2011;42(7):815–8. doi:10.1080/00103624.2011.552657.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:631–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Yeo A. Salinity in Plant solute transport. In: Yeo A, Flowers T, editors. Plant Solute Transport. London: Blackwell Publishing Ltd; 2007. p. 340–356.
  • Katerji N, Hoorn VJW, Hamdy A, Mastrorilli M. Salt tolerance classification of crops according to soil salinity and to water stress index. Agr Water Manage. 2000;43:99–109. doi:10.1016/S0378-3774(99)00048-7.
  • White PJ, Broadly MR. Chloride in soil and its uptake and movement within the plant: a review. Ann Bot. 2001;88:967–988. doi:10.1006/anbo.2001.1540.
  • Ebrahimi R, Bhatla SC. Ion distribution measured by electron probe X-ray microanalysis in apoplast and symplastic pathways in root cells in sunflower plants grown in saline condition. J Biosci. 2012;37:713–721. doi:10.1007/s12038-012.9246-y.
  • Luo Q, Yu B, Liu Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and S. soja under NaCl stress. J Plant Physiol. 2005;162:1003–1012. doi:10.1016/j.jplph.2004.11.008.
  • Mengel K, Kirby EA. Principles of plant nutrition. Dordrecht (Netherlands): Kluwer Academic Publisher; 2001.
  • Wahome PK. Mechanisms of salt tolerance (NaCl) stress tolerance in horticultural crops. A minireview. Acta Hortic. 2003;609:127–131. doi:10.17660/ActaHortic.2003.609.16.
  • Tavakkoli E. High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot. 2010;61:4449–4459. doi:10.1093/jxb/erq251.
  • Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;91:503–527. doi:10.1093/aob/mcg058.
  • Sairam RK, Tyagi A, Chinnusamy W. Salinity tolerance: cellular mechanisms and gene regulation. In: Huang B, editor. Plant-environment interactions. Boca Raton (Fl): CRC Press; 2006. p. 122–136.
  • Fageria NK. The use of nutrients in crop plants. Boca Raton, Florida: CRC Press; 2009.
  • David A, Yadav S, Bhatla SC. Sodium chloride stress induces nitric oxide accumulation in root tips and oil surface accompanying slower oleosin degradation in sunflower seedlings. Physiol Plant. 2010;140:342–354. doi:10.111/j.1399.3054.2010.01408.x.
  • Mukherjee S, Bhatla SC. A novel fluorescence imaging approach to monitor salt stress- induced modulation of oubain- sensitive ATPase activity in sunflower seedling roots. Physiol Plant. 2014;150:540–549. doi:10.1111/ppl.12101.
  • Mukherjee S, David A, Yadav S, Baluska F, Bhatla SC. Salt stress- induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant. 2014;152:714–728. doi:10.1111/ppl.12218.
  • Frandsen GI, Mundy J, Tzen JTC. Oil bodies and their associated proteins, oleosins and caleosins. Physiol Plant. 2003;112:301–307. doi:10.1034/j.1399-3054.2001.1120301.x.
  • Bhatla SC, Vandana S, Kaushik V. Recent developments in the localization of oil body associated signaling molecules during lipolysis in oilseeds. Plant Signal Behav. 2009;4(3):176–182. PMCID: PMC2652523, PMID: 19721744. doi:10.4161/psb.4.3.7799.
  • Sadeghipour HR, Bhatla SC. Differential sensitivity of oleosins to proteolysis during oil body mobilization in sunflower seedlings. Plant Cell Physiol. 2002;43:1117–1126. doi:10.1093/pcp/pcf142.
  • Sadeghipour HR, Bhatla SC. Light-enhanced oil body mobilization in sunflower seedlings accompanies faster protease action on oleosins. Plant Physiol Biochem. 2003;41(4):309–316. doi:10.1016/S0981-9428(03)00024-X.
  • Vandana S, Bhatla SC. Evidence for the probable oil body association of a thiol protease, leading to oleosin degradation in sunflower seedling cotyledons. Plant Physiol Biochem. 2006;44:714–723. doi:10.1016/j.plaphy.2006.09.022.
  • Yadav MK, Bhatla SC. Localization of lipoxygenase activity on the oil bodies and protoplasts using a novel fluorescence imaging method. Plant Physiol Biochem. 2010:1–5. doi:10.1016/j.plaphy.2010.11.012.
  • Pahoja VM, Sethar MA. Review of enzymatic properties of lipase in plants, animals and microorganisms. J Appl Sci. 2002;2(4):474–484. doi:10.3923/jas.2002.474.484.
  • Bhatla SC, Lal MA. Plant physiology, development and metabolism. Springer Nature Singapore Pte. Ltd; 2018. ISBN 978-981-13-2022-4.
  • Kaur H, Mukherjee S, Baluska F, Bhatla SC. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. Plant Signal Behav. 2015;10:1–8. PMID: 26633566, PMCID: PMC4883943. doi:10.1080/15592324.2014.1003752.
  • Byeon Y, Back K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperature and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J Pineal Res. 2014;56:189–195. doi:10.111/jpi.12111.
  • Park S, Byeon Y, Back K. Functional analysis of three ASMT gene family members in rice plants. J Pineal Res. 2013;55:409–415. doi:10.1111/jpi.12088.
  • Arnao MB, Hernandez-Ruiz J. Melatonin: plant growth regulator and/or bio stimulator during stress? Trends Plant Sci. 2014;19:789–797. doi:10.1016/j.tplants.2014.07.006.
  • Shi H, Ye T, Chen Z. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L.) Pers.) varieties contrasting in drought stress resistance. J Exp Bot. 2014;82:218–228. doi:10.1093/jxb/eru373.
  • Kaur H, Bhatla SC. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide. 2016;59:42–53. doi:10.1016/j.niox.2016.07.001.
  • Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 2009;11(4):861–905. doi:10.1089/ars.2018.2177.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–930. doi:10.1016/j.plaphy.2010.08.016.
  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi:10.1016/j.tplants.2004.08.009.
  • Hernandez JA, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long- term salt stress is associated with the induction of antioxidant defences. Plant Cell Environ. 2000;23:853–862. doi:10.1046/j.1365-3040.2000.00602.x.
  • Karray- Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaal M. Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant. 2011;33:1435–1444. doi:10.1007/S11738-010-0679-3.
  • Tanou G, Molassiotis A, Diamantidis G. Induction of reactive oxygen species and necrotic death- like destruction in strawberry leaves by salinity. Environ Exp Bot. 2009;65:270–281. doi:10.1016/j.envexpbot.2008.09.005.
  • Meloni DA, Olivia MA, Carlos AM, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot. 2003;49:69–76. doi:10.1016/S0098-8472(02)00058-8.
  • Wang B, Luttge U, Ratajezak R. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of C3 halophyte Suaeda salsa L. J Plant Physiol. 2004;161:285–293. doi:10.1078/0176-1617-0123.
  • Arora D, Bhatla SC. Nitric oxide triggers a concentration- dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress. Plant Signal Behav. 2015;10:E1071753 1–10. doi:10.1080/15592324.2015.1071753.
  • Herbetter S, Roeckel- Drevet P, Dervet JR. Seleno- independent glutathione peroxidases more than simple antioxidant scavengers. Febs J. 2007;274:2163–2180. doi:10.111/j.1742-4658.2007.65774.x.
  • Jain P, Bhatla SC. Signaling role of phospholipid hyderoperoxide glutathione peroxidase (PHGPX) accompanying sensing of NaCl stress in etiolated sunflower seedling cotyledons. Plant Signal Behav. 2014;9(12):e977746 1–7. doi:10.4161/15592324.2014.977746.
  • Shen Z, Jiang M, Li H, Che LL, Yang ZM. Expression of Brassica napus heme oxygenase confers plant tolerance to mercury toxicity. Plant Cell Environ. 2011;34:752–763. doi:10.1111/j.1365-3040.2011.02279.x.
  • Zhu K, Jin Q, Shamma MK, Lin G, Shen WB. Molecular cloning and characterization of a heme oxygenase1 gene from sunflower and its expression profiles in salinity acclimation. Mol Biol Rep. 2014;41:4109–4121. doi:10.1007/s11033-014-3281-8.
  • Xie X, Cui W, Yuan X, Shen WB, Yang Q. Heme oxygenase- 1 is associated with wheat salinity acclimation by modulating reactive oxygen species homeostasis. J Integr Plant Biol. 2011;53:653–670. doi:10.1111/j.1744-7909.2011.01052.x.
  • Singh N, Bhatla SC. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide. 2016;53:54–64. doi:10.1016/j.niox.2016.01.003.
  • Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR. Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med. 2006;40:501–506. doi:10.1016/j.freeradbiomed.2005.08.047.
  • David A, Yadav S, Baluska F, Bhatla SC. Nitric oxide accumulation and protein tyrosine nitration as a rapid and long distance signalling response to salt stress in sunflower seedlings. Nitric Oxide. 2015;50:28–37. doi:10.1016/j.niox.2015.08.003.
  • Astier J, Lindermayr C. Nitric oxide- dependent post- translational modification in plants: an update. Int J Mol Sci. 2012;13:15193–15208. doi:10.3390/ijms1311115193.
  • Jain P, Toerne C, Lindermayr C, Bhatla SC. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. Physiol Plant. 2018;162:49–72. doi:10.111/ppl.12641.
  • Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun. 2003;30:776–783. doi:10.1016/s0006-291x(03)00814-3.
  • Singh N, Kaur H, Yadav S, Bhatla SC. Does N- nitrosylation compete with S- nitrosothiols as a long distance nitric oxide carrier in plants? Biochem Anal Biochem. 2016;5:1. doi:10.4172/2161-1009.1000262.
  • Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic Biol Med. 2017;106:315–328. doi:10.1016/j.freeradbiomed.2017.02.042.
  • Kumari A, Kapoor R, Bhatla SC. Nitric oxide and light co-regulate Glycine betaine homoestasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity. Plant Signal Behav. 2019; In Press;229:1641–1648. doi:10.1080/15592324.2019.1666656.
  • Tailor A, Tandon R, Bhatla SC. Nitric oxide modulates polyamine biosynthesis in sunflower seedling cotyledons under salt stress. Plant Signal Behav. 2019; In Press;229:1641–1648. doi:10.1080/15592324.2019.1667730.
  • Makavitskaya M, Svistunenko D, Navasesky I, Hryvusevich P, Mackievic V, Rabadanova C, Tyutereva E, Samokina V, Straltsova D, Sokolik A, et al. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels. J Exp Bot. 2018;69(14):3477–3489. doi:10.1093/jxb/ery056.
  • Singh N. Bhatla SC and Demidchik V. Plants and human beings engage similar molecular crosstalk with nitric oxide under stress conditions. Funct Plant Biol. 2019;46:695. doi:10.1071/FP1908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.