831
Views
9
CrossRef citations to date
0
Altmetric
Short Communication

Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis

, , & ORCID Icon
Article: 1674607 | Received 04 Sep 2019, Accepted 26 Sep 2019, Published online: 07 Oct 2019

References

  • Raines CA. The Calvin cycle revisited. Photosynth Res. 2003;75(1):1–4. doi:10.1023/A:1022421515027.
  • Bassham BA, Benson AA, Calvin M. The path of carbon in photosynthesis. J Biol Chem. 1950;185:781–787.
  • Zhang S, Bryant DA. The tricarboxylic acid cycle in cyanobacteria. Science. 2011;334(6062):1551–1553. doi:10.1126/science.1210858.
  • Beevers H. Respiratory metabolism in plants. New York, NY: Harper and Row; 1961.
  • Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG. Not just a cycle: flux modes in the plant TCA cycle. Trends Plant Sci. 2010;15(8):462–470. doi:10.1016/j.tplants.2010.05.006.
  • Nunes-Nesi A, Araújo WL, Obata T, Fernie AR. Regulation of the mitochondrial tricarboxylic acid cycle. Curr Opin Plant Biol. 2013;16(3):335–343. doi:10.1016/j.pbi.2013.01.004.
  • Ogren WL, Bowes G. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol. 1971;230:159–160. doi:10.1038/newbio230159a0.
  • Bauwe H, Hagemann M, Fernie AR. Photorespiration: players, partners and origin. Trends Plant Sci. 2010;15:330–336. doi:10.1016/j.tplants.2010.03.006.
  • Bauwe H, Hagemann M, Kern R, Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol. 2012;15:269–275. doi:10.1016/j.pbi.2012.01.008.
  • Fridlyand LE, Scheibe R. Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles. Biosyst. 1999;2:79–93. doi:10.1016/S0303-2647(99)00017-9.
  • Timm S, Florian A, Wittmiß M, Jahnke K, Hagemann M, Fernie AR, Bauwe H. Serine acts as metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis thaliana. Plant Physiol. 2013;162::379–389. doi:10.1104/pp.113.215970.
  • Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, et al. Redox regulation of the Calvin–benson cycle: something old, something new. Front Plant Sci. 2013;4:470. doi:10.3389/fpls.2013.00470.
  • Leegood RC, PJ L, Adcock MD, Häusler RE. The regulation and control of photorespiration. J Exp Bot. 1995;46:1397–1414. doi:10.1093/jxb/46.special_issue.1397.
  • Mock HP, Dietz KJ. Redox proteomics for the assessment of redox‐related posttranslational regulation in plants. Biochimica Et Biophysica Acta, Proteins and Proteomics. 2016;1864:967–973. doi:10.1016/j.bbapap.2016.01.005.
  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi:10.1105/tpc.105.033589.
  • Meyer Y, Buchannan BB, Vignols F, Recihheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet. 2009;43:335–367. doi:10.1146/annurev-genet-102108-134201.
  • Hashida SN, Kawai-Yamada M. Inter-organelle NAD metabolism underpinning light responsive NADP dynamics in plants. Front Plant Sci. 2019;10:960. doi:10.3389/fpls.2019.00960.
  • Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 2017;22:249–262. doi:10.1016/j.tplants.2016.12.008.
  • Ashton AR, Hatch MD. Regulation of C4 photosynthesis: regulation of activation and inactivation of NADP-malate dehydrogenase by NADP and NADPH. Arch Biochem Biophys. 1983;227:416–425. doi:10.1016/0003-9861(83)90471-x.
  • Miginiac-Maslow M, Lancelin JM. Intrasteric inhibition in redox signalling: light activation of NADP-malate dehydrogenase. Photosynth Res. 2002;72:1–12. doi:10.1023/A:1016099228450.
  • Scheibe R. NADP-malate dehydrogenase in C3 plants: regulation and role of a light-activated enzyme. Physiol Plant. 1987;71:393–400. doi:10.1111/j.1399-3054.1987.tb04362.x.
  • Selinski J, Scheibe R. Malate valves: old shuttles with new perspectives. Plant Biol. 2018;21:21–30. doi:10.1111/plb.12869.
  • Scheibe R. Malate valves to balance cellular energy supply. Physiol Plant. 2004;120: 21–26.
  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y. Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci U S A. 2001;98:14144–14149. doi:10.1073/pnas.241340898.
  • Marcus F, Chamberlain SH, Chu C, Masiarz FR, Shin S, Yee BC, Buchanan BB. Plant thioredoxin h: an animal-like thioredoxin occurring in multiple cell compartments. Arch Biochem Biophys. 1991;287:195–198. doi:10.1016/0003-9861(91)90406-9.
  • Bodenstein-Lang J, Buch A, Follmann H. Animal and plant mitochondria contain specific thioredoxins. FEBS Lett. 1989;258:22–26. doi:10.1016/0014-5793(89)81606-0.
  • Buchanan BB. The path to thioredoxin and redox regulation beyond chloroplasts. Annu Rev Plant Biol. 2017;58:1–24.
  • Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari F, Nunes-Nesi A, et al. (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 112: 1392–1400
  • Florez-Sarasa I, Obata T, Del-Saz NF, Reichheld JP, Meyer EH, Rodriguez-Conception M, Ribas-Carbo M, Fernie AR. The lack of mitochondrial thioredoxin TRXo1 affects in vivo alternative oxidase activity and carbon metabolism under different light conditions. Plant Cell Physiol. 2019. doi:10.1093/pcp/pcz123.
  • Fonseca-Pereira P, Souza PVL, Hou LY, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, et al. Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant Cell Environ. 2019a. doi:10.1111/pce.13640.
  • Reinholdt R, Schwab S, Zhang Y, Reichheld JP, Fernie AR, Hagemann M, Timm S. Redox-regulation of photorespiration through mitochondrial thioredoxin o1. Plant Physiol. 2019. doi:10.1104/pp.19.00559.
  • Timm S, Wittmiß M, Gamlien S, Ewald R, Florian A, Frank M, Wirtz M, Hell R, Fernie AR, Bauwe H. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell. 2015;27:1968–1984. doi:10.1105/tpc.15.00105.
  • Mooney BP, Miernyk JA, Randall DD. The complex fate of alpha-ketoacids. Annu Rev Plant Biol. 2002;53:357–375. doi:10.1146/annurev.arplant.53.100301.135251.
  • Douce R, Bourguignon J, Neuburger M, Rébeillé F. The glycine decarboxylase system: a fascinating complex. Trends Plant Sci. 2001;6:167–176. doi:10.1016/S1360-1385(01)01892-1.
  • Fonseca-Pereira P, Daloso DM, Gago J, de O SFM, Condori-Apfata JA, Florez-Sarasa I, Tohge T, Reichheld JP, Nunes-Nesi A, Fernie AR, et al. The mitochondrial thioredoxin system contributes to the metabolic responses under drought episodes in Arabidopsis. Plant Cell Physiol. 2019b;60:213–229. doi:10.1093/pcp/pcy194.
  • Nunes-Nesi A, Sulpice R, Gibon Y, Fernie AR. The enigmatic contribution of mitochondrial function in photosynthesis. J Exp Bot. 2008;59:1675–1684. doi:10.1093/jxb/ern002.
  • Padmasree K, Padmavathi L, Raghavendra AS. Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition. Crit Rev Biochem Mol Biol. 2002;37:71–119. doi:10.1080/10409230290771465.
  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi:10.1105/tpc.010011.
  • Timm S, Florian A, Fernie AR, Bauwe H. The regulatory interplay between photorespiration and photosynthesis. J Exp Bot. 2016;67:2923–2929. doi:10.1093/jxb/erw083.
  • Obata T, Florian A, Timm S, Bauwe H, Fernie AR. On the metabolic interaction of (photo)respiration. J Exp Bot. 2016;67:3003–3014. doi:10.1093/jxb/erw128.
  • Huang S, Jacoby RP, Shingaki-Wells RN, Li L, Millar AH. Differential induction of mitochondrial machinery by light intensity correlates with changes in respiratory metabolism and photorespiration in rice leaves. New Phytologist. 2013;198:103–115. doi:10.1111/nph.12123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.