1,135
Views
5
CrossRef citations to date
0
Altmetric
Research paper

Profiling miRNA expression in photo-thermo-sensitive male genic sterility line (PTGMS) PA64S under high and low temperature

, , , ORCID Icon, , & ORCID Icon show all
Article: 1679015 | Received 26 Aug 2019, Accepted 07 Oct 2019, Published online: 14 Oct 2019

References

  • Delseny M, Jm S, Cooke R, Sallaud C, Regad F, Lagoda P, Ghesquière, A. Rice genomics: present and future. Plant Physiol Biochem. 2001;39:1–11.
  • Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot. 2007;100:959–966. doi:10.1093/aob/mcm121.
  • Wang Z. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell. 2006;18:676–687. doi:10.1105/tpc.105.038240.
  • Yuan L. Purification and production of foundation seed of rice PGMS and TGMS lines. Hybrid Rice. 1994; 6:1-3.
  • Yang Q, Liang C, Zhuang W, Li J, Deng H, Deng Q, Wang B. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. Planta. 2007;225:321–330. doi:10.1007/s00425-006-0353-6.
  • Shi MS. The discovery and study of the photosensitive recessive male-sterile rice (Oryza sativa L. subsp. japonica). Sci Agric Sin. 1985;2:44–48.
  • Xu M. Response of fertility of Pei’ai 64 S to temperature and photoperiod in rice. Acta Agronomica Sin. 1999;25:772–776.
  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 2012;22:649–660. doi:10.1038/cr.2012.28.
  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, et al. COLD1 confers chilling tolerance in rice. Cell. 2015;160:1209–1221. doi:10.1016/j.cell.2015.01.046.
  • Guo Z, Liu C, Xiao W, Wang R, Zhang L, Guan S, Zhang S, Cai L, Liu H, Huang X, et al. Comparative transcriptome profile analysis of anther development in reproductive stage of rice in cold region under cold stress. Plant Mol Biol Rep. 2019;37:129–145. doi:10.1007/s11105-019-01137-6.
  • Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci. 2012;37:118–125. doi:10.1016/j.tibs.2011.11.007.
  • Liu Q, Yan S, Yang T, Zhang S, Chen YQ, Liu B. Small RNAs in regulating temperature stress response in plants. J Integr Plant Biol. 2017;59:11. doi: 10.1111/jipb.12571.
  • Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta. 2008;1779:743–748. doi:10.1016/j.bbagrm.2008.04.004.
  • Voinnet O. Origin, biogenesis, and activity of plant MicroRNAs. Cell. 2009;136:669–687. doi:10.1016/j.cell.2009.01.046.
  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 2003;132:1382–1390. doi:10.1104/pp.103.021980.
  • Chen X. A MicroRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303:2022–2025. doi:10.1126/science.1088060.
  • Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong D-H, Nakano M, Cao S, Liu C, et al. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J. 2012;69:462–474. doi:10.1111/j.1365-313X.2011.04805.x.
  • Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, et al. Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell. 2007;19:2705–2718. doi:10.1105/tpc.107.052209.
  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant MicroRNA targets. Cell. 2002;110:513–520. doi:10.1016/s0092-8674(02)00863-2.
  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell. 2005;17:2993–3006. doi:10.1105/tpc.105.036004.
  • Ayushi K, Abira C, Mohan K, Asis D. Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci. 2015;6:208.
  • Istrail S, De-Leon SB-T, Davidson EH. The regulatory genome and the computer. Dev Biol. 2007;310:187–195. doi:10.1016/j.ydbio.2007.08.009.
  • Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh Y-F, Hou P-F, Yang T-Y, Chang W-C. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 2016;44:D1154–60. doi:10.1093/nar/gkv1035.
  • Samad AFA, Muhammad S, Nazaruddin N, FI A, MAM A, Zamri Z, Ismail, I. MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci. 2017;8:565. doi: 10.3389/fpls.2017.00565.
  • Dong D, Zhang L, Hang W, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009;103:29–38. doi:10.1093/aob/mcn205.
  • Campo S, Peris-Peris C, Sire C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol. 2013;199:212–227. doi:10.1111/nph.12292.
  • Guo H, Xie Q, Fei J, Chua N. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root devel. Plant Cell. 2005;17:1376. doi:10.1105/tpc.105.030841.
  • He H, Yang T, Wu W, Zheng B. Small RNAs in pollen. Sci China Life Sci. 2015;58:246–252. doi:10.1007/s11427-015-4800-0.
  • Peng H, Chun J, Ai T-B, Tong Y-A, Zhang R, Zhao -M-M, Chen F, Wang S-H. MicroRNA profiles and their control of male gametophyte development in rice. Plant Mol Biol. 2012;80:85–102. doi:10.1007/s11103-012-9898-x.
  • Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics. 2015;16:878. doi:10.1186/s12864-015-2077-0.
  • Yan J, Zhang H, Zheng Y, Ding Y. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta. 2015;241:109–123. doi:10.1007/s00425-014-2167-2.
  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA. The MicroRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 2010;154:757–771. doi:10.1104/pp.110.160630.
  • Csukasi F, Donaire L, Casaal A, Martínez-Priego L, Botella MA, Medina-Escobar N, Llave C, Valpuesta V. Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. New Phytol. 2012;195:47–57. doi:10.1111/j.1469-8137.2012.04134.x.
  • Li WF, Zhang S-G, Han S-Y. Regulation ofLaMYB33by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tissue Organ Culture. 2013;113:131–136. doi:10.1007/s11240-012-0233-7.
  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell. 2009;21:1453–1472. doi:10.1105/tpc.108.062935.
  • Kaneko M. Loss-of-function mutations of the rice GAMYB gene impair ?-Amylase expression in aleurone and flower development. Plant Cell. 2004;16:33–44. doi:10.1105/tpc.017327.
  • Reyes JL, Chua N-H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 2010;49:592–606. doi:10.1111/j.1365-313X.2006.02980.x.
  • Achard P, Herr A, Baulcombe DC, Harberd NP. Modulation of floral development by a gibberellin-regulatedmicroRNA. Development. 2004;131:3357–3365. doi:10.1242/dev.01206.
  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of MicroRNAs on the plant transcriptome. Dev Cell. 2005;8:517–527. doi:10.1016/j.devcel.2005.01.018.
  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. 2005;132:4107–4118. doi:10.1242/dev.01955.
  • Rubio-Somoza I, Weigel D, Qu L-J. Coordination of flower maturation by a regulatory circuit of three MicroRNAs. PLoS Genet. 2013;9:e1003374. doi:10.1371/journal.pgen.1003374.
  • Feng JH. Y LU, Liu XD, Guangzhou, SC Emy. Pollen development and its stages in rice (Oryza sativa L.). Chin J Rice Sci. 2001;15:21–28.
  • Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet. 2006;38:721–725. doi:10.1038/ng1804.
  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–3425. doi:10.1101/gad.1476406.
  • Pelaez P, Trejo MS, Iniguez LP, Estrada-Navarrete G, Covarrubias AA, Reyes JL, Sanchez F. Identification and characterization of microRNAs inPhaseolus vulgarisby high-throughput sequencing. BMC Genomics. 2012;13:83. doi:10.1186/1471-2164-13-83.
  • Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines ofbrassica juncea. BMC Genomics. 2013;14:9. doi:10.1186/1471-2164-14-181.
  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell. 2008;133:116–127. doi:10.1016/j.cell.2008.02.034.
  • Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203. doi:10.1016/j.tplants.2012.01.010.
  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 2007;143:1467–1483. doi:10.1104/pp.106.091900.
  • Luo AD, LIU L, TANG ZS, BAI XQ, CAO SY, CHU CC. Down-regulation of OsGRF1 gene in rice rhd1 mutant results in reduced heading date. Bull Bot. 2005;47:745–752.
  • Kim JH, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J. 2010;36:94–104. doi:10.1046/j.1365-313X.2003.01862.x.
  • Pajoro A, Madrigal P, Mui?o JM, Matus J, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15,3(2014-03-03). 2014;15:R41. doi:10.1186/gb-2014-15-3-r41.
  • Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor‐like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J. 2010;50:751–766. doi:10.1111/j.1365-313X.2007.03083.x.
  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Nakashima, K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molgenetgenomics. 2010;284:173–183.
  • Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–252. doi:10.1016/j.tplants.2004.03.006.
  • Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996;32:191–222. doi:10.1007/bf00039383.
  • Xiang J, Xinbo C, Wei H, Yanci X, Mingli Y, Jieming W. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Rep. 2018;37:1585–1595. doi:10.1007/s00299-018-2331-4.
  • Ye J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34:W293–W7. doi:10.1093/nar/gkl031.
  • Vriet C, Edwards A, Smith AM, Wang TL. Sucrose and Starch Metabolism; 2014:97-115. doi:10.1007/978-3-662-44270-8_10.
  • Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Zuo, J. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Plant Signal Behav. 2009;17:1030–1040.
  • Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. BBA - Mol Cell Biol Lipids. 2003;1632:1–15. doi:10.1016/s1388-1981(03)00033-7.
  • Lynch DV, Dunn TM. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol. 2010;161:677–702. doi:10.1111/j.1469-8137.2004.00992.x.
  • Coursol S, Fan L-M, Stunff HL, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature. 2003;423:651–654. doi:10.1038/nature01643.
  • Liang G, Mishra G, Markham JE, Li M, Wang X. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem. 2012;287:8286–8296. doi:10.1074/jbc.M111.274274.
  • Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, et al. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell. 2011;23:1061–1081. doi:10.1105/tpc.110.079095.
  • Chutharat C, Ketsuwan C, Keasinee P, Sriprapai C, Numphet S, Kanidta S, Suksangpanomrung M, Michaelson LV, Napier JA, Muangprom A, et al. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development. PLoS One. 2014;9:e106386. doi:10.1371/journal.pone.0106386.
  • Fang X, Fu H-F, Gong Z-H, Chai W-G. Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Sci Rep. 2016;6:23357. doi:10.1038/srep23357.
  • Funck D, Winter G, Baumgarten L, Forlani G. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol. 2012;12:191. doi:10.1186/1471-2229-12-191.
  • Curaba J, Singh MB, Bhalla PL. miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot. 2014;65:1425. doi:10.1093/jxb/eru348.
  • Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci U S A. 2012;109:2654–2659. doi:10.1073/pnas.1121374109.
  • Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Feng, M. RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun. 2014;5:4884. doi:10.1038/ncomms5972.
  • Goetz M. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell. 2006;18:1873–1886. doi:10.1105/tpc.105.037192.
  • CECCHETTI V. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell. 2008;20:1760–1774. doi:10.1105/tpc.107.057570.
  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Komatsuda T. Cleistogamous flowering in barley arises from the Suppression of MicroRNA-guided HvAP2 mRNA cleavage. Procnatlacadsciusa. 2010;107:490–495. doi:10.1073/pnas.0909097107.
  • Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet. 2007;39:1517–1521. doi:10.1038/ng.2007.20.
  • Yu S, Galvao VC, Zhang Y-C, Horrer D, Zhang T-Q, Hao Y-H, Feng Y-Q, Wang S, Schmid M, Wang J-W. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. Plant Cell. 2012;24:3320–3332. doi:10.1105/tpc.112.101014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.