2,184
Views
6
CrossRef citations to date
0
Altmetric
Research paper

Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species

ORCID Icon, , , , &
Article: 1682341 | Received 28 Aug 2019, Accepted 15 Oct 2019, Published online: 31 Oct 2019

References

  • Berry JA, Beerling DJ, Franks PJ. Stomata: key players in the Earth system, past and present. Curr Opin Plant Biol. 2010;13:1–10. doi:10.1016/j.pbi.2010.04.013.
  • Smith NG, Keenan TF, Colin PI, Wang H, Wright IJ, Niinemets Ü, Crous KY, Domingues TF, Guerrieri R, Ishida FY, et al. Global photosynthetic capacity is optimized to the environment. Ecol Lett. 2019;22:506–517.
  • Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 2017;40(6):816–830. doi:10.1111/pce.12852.
  • Zhang H, Pan CZ, Gu SH, Ma QM, Zhang, Yi Q, Li X, Shi K. Stomatal movements are involved in elevated CO2-mitigated high temperature stress in tomato. Physiol Plant. 2019;165(3):569–583. doi:10.1111/ppl.12752.
  • Schachtman DP, Goodger JQD. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008;13:281–287. doi:10.1016/j.tplants.2008.04.003.
  • Shang Y, Li M, Ding B, Niu H, Yang ZN, Chen XQ, Cao GY, Xie XD. Advances in auxin regulation of plant stomatal development. Chin Bull Bot. 2017;52:235–240.
  • Tanaka Y, Nose T, Jikumaru Y, Kamiya Y. ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J. 2013;74:448–457. doi:10.1111/tpj.2013.74.issue-3.
  • Ball JT, Woodrow IE, Berry JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J editor. Progress in photosynthesis research. Springer; 1987. p. 221–224.
  • Dewar RC. The Ball–Berry–Leuning and Tardieu–Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ. 2002;25(11):1383–1398. doi:10.1046/j.1365-3040.2002.00909.x.
  • Farquhar GD, von Caemmerer S, Berry JA. Models of photosynthesis. Plant Physiol. 2001;125:42–45. doi:10.1104/pp.125.1.42.
  • Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ. 2003;26:1097–1116. doi:10.1046/j.1365-3040.2003.01035.x.
  • Woodruff DR, Meinzer FC, McCulloh KA. Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer. J Exp Bot. 2010;61(1):203–210. doi:10.1093/jxb/erp291.
  • Wang SS, Yang Y, Trishchenko AP, Barr AG, Black TA, McCaughey H. Modeling the response of canopy stomatal conductance to humidity. J Hydrometeorol. 2009;10(2):521–532. doi:10.1175/2008JHM1050.1.
  • Jarvis PG. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B Biol Sci. 1976;273(927):593–610. doi:10.1098/rstb.1976.0035.
  • Leuning R. A critical appraisal of a combined stomatal photosynthesis model for C3 plants. Plant Cell Environ. 1995;18:339–355. doi:10.1111/pce.1995.18.issue-4.
  • Cowan IR, Farquhar GD. Stomatal function in relation to leaf metabolism and environment. Symposia Society for Experimental Biology. 1977;31:471–505.
  • Wang YH, Zhou GS. Analysis and quantitative simulation of stomatal conductance of Aneurolepidium chinense. Acta Phytoecologica Sin. 2000;24:739–743.
  • Liu YH, Gao Q, Jia HK. Leaf-scale drought resistance and tolerance of three plant species in a semi-arid environment: application and comparison of two stomatal conductance models. J Plant Ecol. 2006;30(1):64–70. doi:10.17521/cjpe.2006.0009.
  • Shi XH, Chen ZY, Liu KY, Yang GS, Zhong XH. Effects of different relative humidities on physiological activities of wild grape. Chin J Eco-Agri. 2005;13:65–67.
  • Soni DK, Ranjan S, Singh R, Khare PB, Pathre UV, Shirke PA. Photosynthetic characteristics and the response of stomata to environmental determinants and ABA in Selaginella bryopteris, a resurrection spike moss species. Plant Sci. 2012;191:43–52. doi:10.1016/j.plantsci.2012.04.011.
  • Perez TM, Feeley KJ. Increasing humidity threatens tropical rainforests. Front Ecol Evol. 2018;6:68. doi:10.3389/fevo.2018.00068.
  • Slot M, Winter K. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytol. 2017;214(3):1103–1117. doi:10.1111/nph.14469.
  • Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, et al. Global climatic drivers of leaf size. Science. 2017;357(6354):917–921. doi:10.1126/science.aal4760.
  • Arbona V, Perez-Clemente RM, Sanchez-Perez AM, Manzi M, Zandalinas SI, Vives V, Gomez-Cadenas A. Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr Protein Pept Sci. 2015;16(5):413–434. doi:10.2174/1389203716666150330130102.
  • Merilo E, Jalakas P, Laanemets K, Mohammadi O, Hrak H, Kollist H, Brosche M. Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant. 2015;8(9):1321–1333. doi:10.1016/j.molp.2015.06.006.
  • Min MK, Choi EH, Kim JA, Yoon IS, Han S, Lee Y, Lee S, Kim BG. Two clade a phosphatase 2Cs expressed in guard cells physically interact with abscisic acid signaling components to induce stomatal closure in rice. Rice. 2019;12(1):1–13. doi:10.1186/s12284-019-0297-7.
  • Qin T, Tian QZ, Wang GF, Xiong LM. Lower temperature 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-Domain ABA-related proteins in Arabidopsis. Mol Plant. 2019;12(9):1243–1258. doi:10.1016/j.molp.2019.05.002.
  • Tao HC, Xu S, Fu W, He XY, Chen W, Ma CL, Li Y, Wu X. Effects of elevated O3 concentration and drought on photosynthetic physiological characteristics of Syringa oblate leaves. Jiangsu Agri Sci. 2019;47:186–190.
  • Wang SC, Li C, ShiS. G, Ma FW. Effects of exogenous aba on leaf anatomy and hormone contents of apple rootstocks. Agri Res Arid Areas. 2019;37:31–40.
  • Bunce JA. Does transpiration control stomatal responses to water vapour pressure deficit?. Plant Cell Environ. 1996;19:131–135.
  • Snaith PJ, Mansfield TA. Stomatal sensitivity to abscisic acid: can it be defined? Plant Cell Envi. 1982;5(4):309–311. doi:10.1111/pce.1982.5.issue-4.
  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot. 2006;57(10):2259–2266. doi:10.1093/jxb/erj193.
  • Acharya BR, Assmann SM. Hormone interactions in stomatal function. Plant Mol Biol. 2009;69(4):451–462. doi:10.1007/s11103-008-9427-0.
  • Bi GH, Wu GX, Zhang GZ. Annual variation of IAA and ABA contents in young apple tree. J Shandong Agri Univ. 1995;2:98–102.
  • Börner A, Plaschke J, Korzun V, Worland AJ. The relationships between the dwarfing genes of wheat and rye. Euphytica. 1996;89(1):69–75. doi:10.1007/BF00015721.
  • Hoffmann BS, Kende H. On the role of abscisic-acid and gibberellin in the regulation of growth in rice. Plant Physiol. 1999;99:1156–1161. doi:10.1104/pp.99.3.1156.
  • Li J, Li XM. Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones. J Arid Land. 2014;6(6):771–781. doi:10.1007/s40333-014-0030-8.
  • Dias MC, Brüggemann W. Differential inhibition of photosynthesis under drought stress inflaveriaspecies with different degrees of development of the C4 syndrome. Photosynthetica (Prague). 2007;45(1):75–84. doi:10.1007/s11099-007-0012-6.
  • Liu HM, Long CR, Li JX, Fu XM, Zhou DG, Gao JY, Dong MC, Yue JQ. A study on photosynthetic characteristics and fruiting performance of three lemon varieties in dry-hot valley regions in Yunnan province. J Fruit Sci. 2017;34:59–68.
  • Wu XL, Tang Z, Wu Y, Cao JW, Li Q, Ma B, Chen YZ, Sun MH, Li JJ. Diurnal variation regulations of photosynthetic characteristics in two Camellia oleifera cultivars and six related C. oleifera species. Non-wood for Res. 2019;37:101–109.
  • Huang ZY, Dong XJ. Primary studies on the daily dynamic changes of photosynthesis and transpiration of Salix psammophila. Acta Bot Boreali-Occidentalia Sin. 2002;22:817–823.
  • Weng XY, Jiang DA. Regulation of rubisco activity and diurnal changes of photosynthetic rate in rice by ecology factors. J Zhejiang Univ. 2002;28:387–391.
  • Yang MH, Li ZH, Huang LQ, Yang Y. Photosynthesis change in a day of Ginkgo Biloba. Nonwood Forest Res. 2004;22:15–18.
  • Zhao P, Zeng XP, Peng SL, Sun GT. Daily variation of gas exchange, stomatal conductance and water use efficiency in summer leaves of Ormosia Pinnata. J Trop Subtropical Bot. 2000;8:35–42.
  • Héroult A, Lin YS, Bourne A, Medlyn BE, Ellsworth DS. Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. Plant Cell Environ. 2013;36:262–274. doi:10.1111/j.1365-3040.2012.02570.x.
  • Mdelyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis DE, Freeman DE, Wingate PML. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol. 2011;17:2134–2144. doi:10.1111/j.1365-2486.2010.02375.x.
  • Fu L, Wang ML, Gao JG, Sheng F, Su XR. Annual dynamic patten of four endogenous hormones in young apple trees. J Shandong Agri Univ. 2000;31:180–182.
  • Bland JM, Altman DG. Statistics notes: measurement error. Br Med J. 1996;312(7047):1654. doi:10.1136/bmj.312.7047.1654.
  • Morison JI, Gifford RM. Stomatal sensitivity to carbon dioxide and humidity a comparison of two C3 and two C4 grass species. Plant Physiol. 1983;71:789–796.
  • Rosenberg NJ, Blad BL, Verma SB. Microclimate: the biological environment, 2nd ed. Hoboken: Wiley; 1983.
  • Chang JC, Lin TZ. Gas exchange in litchi under controlled and field conditions. Sci Hortic (Amsterdam). 2007;114:268–274. doi:10.1016/j.scienta.2007.06.023.
  • Eamus D, Taylor DT, Maccinis-Ng CMO, Shanahan S, DeSilva L. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant Cell Environ. 2008;31:269–277.
  • Yang SQ, Yang ZQ, Wang L, Li J, Zhang MY, Li KW. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops. Chin J Ecol. 2018;37:57–63.
  • Zhu YQ, Yang ZQ. Effects of high temperature and high humidity on stomatal and photosynthesis characteristics of grape leaves in greenhouse. North Hortic. 2017;23:94–101.
  • Aronne G, De Micco V. Seasonal dimorphism in the Mediterranean Cistus incanus L subsp.incanus. Ann Bot. 2001;87:789–794. doi:10.1006/anbo.2001.1407.
  • Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ. 2013;36:382–392. doi:10.1111/j.1365-3040.2012.02580.x.
  • Cai B. Comparative study on biological characteristics of Plukenetia volubilis L. under different sites condition. Haikou: HaiNan University; 2018.
  • Fanourakis D. Stomatal response characteristics as affected by long-term elevated humidity levels. PLoS One. 2011;1-182.
  • Han L, He J, Qi TY, Tian J, Zhan XL. Responses and modeling of canopy stomatal conductance of platycladus orientalis to environmental factors in hedong sandy land, ningxia. Chin J Ecol. 2018;37:2862–2868.
  • Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature. 2003;424:901–908. doi:10.1038/nature01843.
  • Zhang ZZ, Zhao P, Zhao XH, Zhang JX, Zhu LW, Ouyang L, Zhang XY. Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species. Chin J Plant Ecol. 2018;42(12):1179–1191. doi:10.17521/cjpe.2018.0176.
  • Prenger JJ, Ling PP. Greenhouse condensation control understanding and using vapor pressure deficit (VPD), Fact Sheet Extension. Columbus: The Ohio State University. AEX-804; 2001. p. 1–4
  • Huang J, Chen ZF, Yin LY, Li MQ, Wang LH, Teng WC. Effects of three plant exogenous hormones on the biomass,chlorophyll fluorescence parameters,and photosynthetic characteristics of tabebuia chrysantha seedlings. Plant Sci J. 2018;36:745–754.
  • Jia FL, Wang CP, Liu S, Jiao ZY, Yin WL, Xia XL. Effects of exogenous br and IAA on drought tolerance of populus deltoides ×p. nigra. J Beijing For Univ. 2017;39:31–39.
  • Le J, Liu XG, Yang KZ, Chen XL, Zou JJ, Wang HZ, Wang M, Vanneste S, Miyo M, Tasaka M, et al. Auxin transport and activity regulate stomatal patterning and development. Nat Commun. 2014;5:3090. doi:10.1038/ncomms4090.
  • Wei DZ, Dai XB, Xu XM, Zhang RX. Several hypotheses on the mechanism of the plant leaf senescence. Guihaia. 1998;18:89–96.
  • Yan WY, Ye SH, Dong YJ, Jin QS, Zhang XM. Research progress related to plant leaf senescence. Crops. 2010;36:4–9.
  • Ma XL, LI HS. Review of the mechanisms of hybrid rice early aging. Hunan Agr Sci. 2007;3:59–61.
  • Liang JS. Effects of ABA and vapour pressure deficit on stomatal conductance of sunflower leaves. J YangZhou Univ. 1999;2:41–45.