1,900
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1682829 | Received 09 Aug 2019, Accepted 14 Oct 2019, Published online: 28 Oct 2019

References

  • Utama ZH. Rice cultivation on marginal land: tips on increasing rice production. Yogyakarta (Indonesia): Andi; 2015.
  • Ritung S, Suryani E, Subardja D, Sukarman NK, Suparto H, Mulyani A, Tafakresnanto C, Sulaeman Y, Subandiono RE, Wahyunto, et al. Agricultural land resources of indonesia: area, distribution, and potential availability. Jakarta (Indonesia): IAARD Pr; 2015
  • Suhartatik E, Makarim AK. Nutrient needs of rice in swampy land. JPPTP. 2009;28:1–12.
  • Kirk GJD. The biogeochemistry of submerged soils. Chichester (England): J Wiley; 2004.
  • Becker M, Asch F. Iron toxicity in rice: conditions and management concepts. J Plant Nutr Soil Sci. 2005;168:558–573. doi:10.1002/jpln.200520504.
  • Engel K, Asch F, Becker M. Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. J Plant Nutr Soil Sci. 2012;175:871–881. doi:10.1002/jpln.201100421.
  • Wu LB, Ueda Y, Lai SK, Frei M. Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell Environ. 2016;40(4):570–584. doi:10.1111/pce.12733.
  • Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. doi:10.3389/fenvs.2014.00053.
  • Kovačević V, Vukadinović V, Bertić B. Excessive iron and aluminum uptake and nutritional stress in corn (Zea mays L.) plants. J Plant Nutr. 1988;11(6–11):1263–1272. doi:10.1080/01904168809363884.
  • Snowden RED, Wheeler BD. Iron toxicity to fen plant species. J Ecol. 1993;81:35–46. doi:10.2307/2261222.
  • Albano JP, Miller WB, Halbrooks MC. Iron toxicity stress causes bronze speckle, a specific physiological disorder of marigold (Tagetes erecta L.). J Amer Soc Hortic Sci. 1996;121(3):430–437. doi:10.21273/JASHS.121.3.430.
  • Lucassen ECHET, Smolders AJP, Roelofs JGM. Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquatic Bot. 2000;66:321–327. doi:10.1016/S0304-3770(99)00083-2.
  • Khabaz-Saberi H, Rengel Z, Wilson R, Setter TL. Variation for tolerance to high concentration of ferrous iron (Fe2+) in Australian hexaploid wheat. Euphytica. 2010;172(2):275–283. doi:10.1007/s10681-009-0069-3.
  • Tanaka A, Loe R, Navasero SA. Some mechanism involved in the development of iron toxicity symptoms in the rice plant. Soil Sci Plant Nutr. 1966;12(4):32–38. doi:10.1080/00380768.1966.10431951.
  • Fang WC, Kao CH. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci. 2000;158(1–2):71–76. doi:10.1016/S0168-9452(00)00307-1.
  • Audebert A, Sahrawat KL. Mechanisms for iron toxicity tolerance in lowland rice. J Plant Nutr. 2000;23(11&12):1877–1885. doi:10.1080/01904160009382150.
  • Wishart DS, Feunang DY, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, C L, Karu N, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017;46:D608–D617. doi:10.1093/nar/gkx1089.
  • Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S, Lefèvre I. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ. 2012;35(10):1837–1859. doi:10.1111/j.1365-3040.2012.02521.x.
  • Hill CB, Roessner U. Metabolic profiling of plants by GC-MS. In Weckwerth W, Kahl G, editors. The handbook of plant metabolomics. Weinheim (Germany): Wiley-VCH Verlag GmBH & Co; 2013; 3-23.
  • Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci. 2013;14:4885–4911. doi:10.3390/ijms14034885.
  • Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K. Using metabolomic approaches to explore chemical diversity in rice. Mol Plant. 2015;8:58–67. doi:10.1093/mp/ssu125.
  • Widodo PJH, Newbigin E, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and clipper, which differ in salinity tolerance. J Exp Bot. 2009;60(14):4089–4103. doi:10.1093/jxb/erp243.
  • Barding GA, Fukao T, Béni S, Bailey-Serres J, Larive CK. Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. J Proteome Res. 2012;11:320–330. doi:10.1021/pr200919b.
  • Yoshida S, Forno DA, Cock JH, Gomez KA. Laboratory manual for physiological studies of rice. Manila (Philippines): The International Rice Research Institute; 1976.
  • Nugraha Y, Ardie SW, Ghulamahdi M, Aswidinnoor H. Nutrient culture media with agar is effective for early and rapid screening of iron toxicity tolerance in rice. J Crop Sci Biotech. 2015;19(1):61–70. doi:10.1007/s12892-015-0075-z.
  • Turhadi N. 2018. Tolerance level of several rice (Oryza sativa L.) genotypes to Fe toxicity based on morpho-physiological traits. [MSc Thesis]. Bogor (Indonesia): Bogor Agricultural University.
  • Mongon J, Konnerup D, Colmer TD, Rerkasem B. Responses of rice to Fe2+ in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier. Funct Plant Biol. 2014;41:922–929. doi:10.1071/FP13359.
  • International Rice Research Institute. Standard evaluation system for rice. Manila (Philippines): The International Rice Research Institute; 2013.
  • Lichtenthaler HK. Chlorophylls and carotenoid: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Müller C, Kuki NK, Pinheiro DT, de Souza LR, Silva AIS, Loureiro ME, Oliva MA, Almeida AM. Differential physiological responses in rice upon exposure to excess distinct iron forms. Plant Soil. 2015;391:123–138. doi:10.1007/s11104-015-2405-9.
  • Wang YS, Ding MD, Gu XG, Wang JL, Yunli P, Gao LP, Xia T. Analysis of interfering substances in the measurement of malondialdehid content in plant leaves. Am J Biochem Biotechnol. 2013;9(3):235–242. doi:10.3844/ajbbsp.2013.235.242.
  • Vargas LHG, Neto JCR, de Aquino Ribeiro JA, Ricci-Silva ME, Souza MT, Rodrigues CM, Abdelnur PV. Metabolomics analysis of oil palm (Elaeis guineensis) leaf: evaluation of sample preparation steps using UHPLC-MS/MS. Metabolomics. 2016;12(10):1–12. doi:10.1007/s11306-016-1100-z.
  • Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinf. 2016;55:14.10.1–14.10.91. doi:10.1002/cpbi.11.
  • Gupta P, De B. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signaling Behav. 2017;12(7):e1335845. doi:10.1080/15592324.2017.1335845.
  • Nugraha Y, Rumanti IA, Guswara A, Ardie SW, Ghulammahdi M, Aswidinnoor H. Response of selected rice varieties under excess iron condition. JPPTP. 2016;35:181–190.
  • Turhadi T, Hamim H, Ghulamahdi M, Miftahudin M. Morpho-physiological responses of rice genotypes and its clustering under hydroponic Fe toxicity conditions. Asian J Agric Biol. 2018;6:495–505.
  • Kabir AH, Begum MC, Haque A, Amin R, Swaraz AM, Haider SA, Paul NK, Hossain MM. Genetic variation in Fe toxicity tolerance is associated with the regulation of translocation and chelation of iron along with antioxidant defence in shoots of rice. Funct Plant Biol. 2016;43(11):1070–1081. doi:10.1071/FP16068.
  • Shimizu A, Guerta CQ, Gregorio GB, Ikehashi H. Improved mass screening of tolerance to iron toxicity in rice by lowering temperature of culture solution. J. Plant Nutr. 2005;28:1481–1493. doi:10.1080/01904160500201352.
  • Peng XX, Yamauchi M. Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil. 1993;49:227–234. doi:10.1007/BF00016613.
  • Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM, Pavan S, Montemurro C. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci. 2017;18(377):1–16. doi:10.3390/ijms18020377.
  • Skórzyńska-Polit E. Lipid peroxidation in plant cells, its physiological role and changes under heavy metal stress. Acta Soc Bot Pol Pol Tow Bot. 2007;76(1):49–54. doi:10.5586/asbp.2007.006.
  • Marschner H. Mineral nutrition of higher plants. San Diego (USA): Academic Pr; 1995.
  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, Antonio C. Mass spectrometry-based plant metabolomics: metabolite response to abiotic stress. Mass Spectrom Rev. 2016;35:620–649. doi:10.1002/mas.21449.
  • Do Amaral MN, Arge LWP, Benitez LC, Danielowski R, da Silveira Silveira SF, da Rosa Farias D, de Oliveira AC, da Maia LC, Braga EJB. Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genomics. 2016;16(5):567–579. doi:10.1007/s10142-016-0507-y.
  • Finatto T, de Oliveira AC, Chaparro C, da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Llauro C, Panaud O, et al. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice. 2015;8(13):1–18. doi:10.1186/s12284-015-0045-6.
  • Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK. Transcriptomic analysis of rice in response to iron deficiency and excess. Rice. 2014;7(18):1–15. doi:10.1186/s12284-014-0018-1.
  • Wang X. Lipid signaling. Curr Opin Plant. 2004;7(3):329–336. doi:10.1016/j.pbi.2004.03.012.
  • Zhang L, Li G, Wang M, Di D, Sun L, Kronzucker HJ, Shi W. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. New Phytol. 2018;219(1):259–274. doi:10.1111/nph.15157.
  • Li G, Kronzucker HJ, Shi W. Root developmental adaptation to Fe toxicity: mechanisms and management. Plant Signaling Behav. 2016;11(1):e1117722. doi:10.1080/15592324.2015.1117722.
  • Li Q, Lei S, Du K, Li L, Pang X, Wang Z, Wei M, Fu S, Hu L, Xu L. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep. 2016;6:36463. doi:10.1038/srep36463.
  • Wasternack C, Kombrink E. Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol. 2010;5:63–77. doi:10.1021/cb900269u.
  • Upchurch RG. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett. 2008;30(6):967–977. doi:10.1007/s10529-008-9639-z.
  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry. 1997;45(7):1343–1350. doi:10.1016/S0031-9422(97)00159-3.
  • Ammar WB, Nouairi I, Zarrouk M, Jemal F. The effect of Cadmium on lipid and fatty acid biosynthesis in tomato leaves. Biologia. 2008;63(1):86–93. doi:10.2478/s11756-008-0002-6.
  • Morsy AA, Salama KHA, Kamel HA, Mansour MMF. Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian J Biosci. 2012;6:1–10. doi:10.5053/ejobios.2012.6.0.1.
  • Chalbi N, Hessini K, Gandour M, Mohamed SN, Smaoui A, Abdelly C, Youssef NB. Are changes in membrane lipids and fatty acid composition related to salt stress resistance in wild and cultivated barley? J Plant Nutr Soil Sci. 2013;176:138–147. doi:10.1002/jpln.201100413.
  • Hiremath SS, Sajeevan RS, Nataraja KN, Chaturvedi AK, Chinnusamy V, Pal M. Silencing of fatty acid desaturase (FAD7) gene enhances membrane stability and photosynthetic efficiency under heat stress in tobacco (Nicotiana benthamiana). IJEB. 2017;55:532–541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.