1,014
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

MicroRNA160 regulates leaf curvature in potato (Solanum tuberosum L. cv. Désirée)

&
Article: 1744373 | Received 17 Jan 2020, Accepted 05 Mar 2020, Published online: 01 Apr 2020

References

  • Niinemets Ü, Sack L. Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. Progress in Botany. 2006;1–10.
  • Moon J, Hake S. How a leaf gets its shape. Curr Opin Plant Biol. [Internet]. 2011;14:24–30. doi:10.1016/j.pbi.2010.08.012. .
  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P. A conserved molecular framework for compound leaf development. Science (80-). 2008;322(5909):1835–1839. doi:10.1126/science.1166168.
  • Xiong Y, Jiao Y. The diverse roles of auxin in regulating leaf development. Plants. 2019;8(7):243. doi:10.3390/plants8070243.
  • Shwartz I, Levy M, Ori N, Bar M. Hormones in tomato leaf development. Dev Biol. [Internet]. 2016;419:132–142. doi:10.1016/j.ydbio.2016.06.023.
  • Leyser O. Auxin signaling. Plant Physiol [Internet] 2018; 176:465–479. Available from: http://www.plantphysiol.org/lookup/doi/10.1104/pp.17.00765
  • Finet C, Berne-Dedieu A, Scutt CP, Marlétaz F. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol Biol Evol. 2013;30(1):45–56. doi:10.1093/molbev/mss220.
  • Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci. 1999;96(10):5844–5849. doi:10.1073/pnas.96.10.5844.
  • Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. [Internet] 2003; 15(2):533–543. Available from: http://www.nature.com/articles/nplants2016190%5Cnhttp://www.plantphysiol.org/cgi/doi/10.1104/pp.106.079509%5Cnpapers3://publication/doi/10.1038/nature08122%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4145118&tool=pmcentrez&rendertype=abst
  • Del Bianco M, Kepinski S. Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol. [Internet] 2011; 3(1):a001578. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21047914
  • Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grünwald K, Wallner ES, Novikova DD, Levitsky VG, Agustí J, et al. Spatial specificity of auxin responses coordinates wood formation. Nat Commun. [Internet] 2018; 9(1). Available from: http://dx.doi.org/10.1038/s41467-018-03256-2
  • Zhang JY, He SB, Li L, Yang HQ. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc Natl Acad Sci U S A. 2014;111(29):E3015–E3023. doi:10.1073/pnas.1400542111.
  • Piya S, Shrestha SK, Binder B, Neal Stewart C, Hewezi T. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front Plant Sci. 2014;5:1–9. doi:10.3389/fpls.2014.00744.
  • Vernoux T, Brunoud G, Farcot E, Morin V, Van Den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol. 2011;7:508.
  • Damodharan S, Zhao D, Arazi T. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J. 2016;86:458–471. doi:10.1111/tpj.13127.
  • Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Plant Mol Biol. 2012;10(6):561–576. doi:10.1007/s11103-012-9883-4.
  • Ben-Gera H, Dafna A, Alvarez JP, Bar M, Mauerer M, Ori N. Auxin-mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. Plant J. 2016;86:443–457. doi:10.1111/tpj.13188.
  • Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, Siddappa S, Thulasiram HV, Chakrabarti SK, Banerjee AK. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J Exp Bot. 2018;69(8):2023–2036. doi:10.1093/jxb/ery025.
  • Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell. 2005;17(5):1360–1375. doi:10.1105/tpc.105.031716.
  • Wang J, Wang L, Mao Y, Cai W, Xue H, Chen X. Control of root cap formation by MicroRNA-targeted auxin response factors in arabidopsis. Plant Cell. 2005;17(8):2204–2216. doi:10.1105/tpc.105.033076.
  • Liu Z, Jia L, Mao Y, He Y. Classification and quantification of leaf curvature. J Exp Bot. 2010;61(10):2757–2767. doi:10.1093/jxb/erq111.
  • Bonner J, Koepfli JB. The inhibition of root growth by auxins. Am J Bot. [Internet] 1939; 26:557–566. Available from: http://www.jstor.org/stable/2436583
  • Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci U S A. 2007;104(36):14537–14542. doi:10.1073/pnas.0704166104.
  • Challa KR, Rath M, Nath U. The CIN-TCP transcription factors promote commitment to differentiation in Arabidopsis leaf pavement cells via both auxin-dependent and independent pathways. PLoS Genet. 2019;15(2):1–30. doi:10.1371/journal.pgen.1007988.
  • Nath U, Crawford BCW, Carpenter R, Coen E. Genetic control of surface curvature. Science (80-). 2003;299(5611):1404–1407. doi:10.1126/science.1079354.
  • Das Gupta M, Aggarwal P, Nath U. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling. New Phytol. 2014;204(4):901–912. doi:10.1111/nph.12963.
  • Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol. 2017;175(2):874–885. doi:10.1104/pp.17.00732.
  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007;39(6):787–791. doi:10.1038/ng2036.
  • Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J. 2011;67:595–607. doi:10.1111/j.1365-313X.2011.04616.x.
  • White DWR. PEAPOD regulates lamina size and curvature in Arabidopsis. Proc Natl Acad Sci USA. 2006;103(35):13238–13243. doi:10.1073/pnas.0604349103.
  • Baekelandt A, Pauwels L, Wang Z, Li N, De Milde L, Natran A, Vermeersch M, Li Y, Goossens A, Inzé D, et al. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes. Plant Physiol. 2018;178(1):217–232. doi:10.1104/pp.18.00327.
  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. [Internet] 2010 [cited 2015 Apr 16]; 6:e1001031. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2908682&tool=pmcentrez&rendertype=abstract
  • Damodharan S, Corem S, Gupta SK, Arazi T. Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J. 2018;96(4):855–868. doi:10.1111/tpj.14073.
  • Yang J, Tian L, Sun MX, Huang XY, Zhu J, Guan YF, Jia QS, Yang ZN. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol. 2013;162(2):720–731. doi:10.1104/pp.113.214940.
  • Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol. 2013;162(4):2042–2055. doi:10.1104/pp.113.220699.
  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3(1):1–12. doi:10.1186/1746-4811-3-12.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. [Internet]. 2012;9:671–675. doi:10.1038/nmeth.2089.
  • Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol. 2018;176(2):1694–1708. doi:10.1104/pp.17.00823.
  • Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. MicroRNA156: a potential graft-transmissible MicroRNA that modulates plant architecture and tuberization in solanum tuberosum ssp andigena. Plant Physiol. 2014;164:1011–1027. doi:10.1104/pp.113.230714.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.