928
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

A potential pathway for flippase-facilitated glucosylceramide catabolism in plants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1783486 | Received 12 May 2020, Accepted 12 Jun 2020, Published online: 28 Aug 2020

References

  • López-Marqués RL, Poulsen LR, Palmgren MG. A putative plant aminophospholipid flippase, the arabidopsis p4 atpase ala1, localizes to the plasma membrane following association with a β-subunit. PLoS One. 2012;7(4):1. doi:10.1371/journal.pone.0033042.
  • Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Palmgren MG. The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a β-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell. 2008;20(3):658–5. doi:10.1105/tpc.107.054767.
  • Palmgren M, Østerberg JT, Nintemann SJ, Poulsen LR, López-Marqués RL. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases. Biochimica Et Biophysica Acta Biomembr. 2019. doi:10.1016/j.bbamem.2019.02.006.
  • Jensen MS, Costa SR, Duelli AS, Andersen PA, Poulsen LR, Stanchev LD, Palmgren GM, Pomorski TG, López-Marqués RL. Phospholipid flipping involves a central cavity in P4 ATPases. Sci Rep. 2017;7(1):17621. doi:10.1038/s41598-017-17742-y.
  • Davis JA, Pares RB, Bernstein T, McDowell SC, Brown E, Stubrich J, Harper JF. The lipid flippases ALA4 and ALA5 play critical roles in cell expansion and plant growth. Plant Physiol. 2020. doi:10.1104/pp.19.01332.
  • Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB. Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell. 2008;20(7):1862–1878. doi:10.1105/tpc.107.057851.
  • Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui JC, Satiat-JeuneMaître B, Faure J-D. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell. 2011;23(6):2362–2378. doi:10.1105/tpc.110.080473.
  • König S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, Feussner I. Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol. 2012;196(4):1086–1097. doi:10.1111/j.1469-8137.2012.04351.x.
  • Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Xiao S. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in arabidopsis. Plant Cell. 2008;20(11):3163–3179. doi:10.1105/tpc.108.060053.
  • Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Scheller HV. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell. 2014;26(8):3314–3325. doi:10.1105/tpc.114.129171.
  • Fang L, Ishikawa T, Rennie EA, Murawska GM, Lao J, Yan J, Tsa AYi, Baidoo EEK, Xu J, Keasling JD, et al. Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in arabidopsis. Plant Cell. 2016;28(12):2991–3004. doi:10.1105/tpc.16.00186.
  • Ishikawa T, Fang L, Rennie EA, Sechet J, Yan J, Jing B, Moore W, Cahoon EB, Scheller HV, Kawai-Yamada M, et al. GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDTRANSFERASE1 (GINT1) is a GlcNAc-containing glycosylinositol phosphorylceramide glycosyltransferase. Plant Physiol. 2018;177(3):938–952. doi:10.1104/pp.18.00396.
  • Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Paper JM, Boyle DL, Cahoon RE, Kathrin Schrick, Cahoon EB. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J. 2015;84(1):188–201. doi:10.1111/tpj.13000.
  • Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem. 2020;295(3):717–728. doi:10.1074/jbc.RA119.011274.
  • Chen LY, Shi DQ, Zhang WJ, Tang ZS, Liu J, Yang WC. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat Commun. 2015;6(1):1–10. doi:10.1038/ncomms7030.
  • Li J, Bi FC, Yin J, Wu JX, Rong C, Wu JL, Yao N. An Arabidopsis neutral ceramidase mutant ncer1 accumulates hydroxyceramides and is sensitive to oxidative stress. Front Plant Sci. 2015;6(JUNE):1–8. doi:10.3389/fpls.2015.00460.
  • Pata MO, Wu BX, Bielawski J, Xiong TC, Hannun YA, Ng CKY. Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice. Plant J. 2008;55(6):1000–1009. doi:10.1111/j.1365-313X.2008.03569.x.
  • Wu JX, Li J, Liu Z, Yin J, Chang ZY, Rong C, Wu JL, Bi FC, Yao N. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. Plant J. 2015;81(5):767–780. doi:10.1111/tpj.12769.
  • Guo L, Mishra G, Taylor K, Wang X. Phosphatidic acid binds and stimulates arabidopsis sphingosine kinases. J Biol Chem. 2011;286(15):13336–13345. doi:10.1074/jbc.M110.190892.
  • Imai H, Nishiura H. Phosphorylation of Sphingoid Long-chain Bases in Arabidopsis: functional Characterization and Expression of the First Sphingoid Long-chain Base Kinase Gene in Plants. Plant Cell Physiol. 2005;46(2):375–380. doi:10.1093/pcp/pci023.
  • Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure J-D. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J. 2008;56(1):169–179. doi:10.1111/j.1365-313X.2008.03596.x.
  • Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell. 2006;18(12):3576–3593. doi:10.1105/tpc.105.040774.
  • Ng CKY, Carr K, McAinsh MR, Powell B, Hetherington AM. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature. 2001;410(6828):596–599. doi:10.1038/35069092.
  • Coursol S, Fan LM, Stunff HL, Splegel S, Gilroy S, Assman SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature. 2003;423(6940):651–654. doi:10.1038/nature01643.
  • Verhoek B, Linscheid M, Wrage K, Heinz E. Lipids and enzymatic activities in vacuolar membranes isolated via protoplasts from oat primary leaves. Zeitschrift Fur Naturforschung Sect C J Biosci. 1983;38(9–10):770–777. doi:10.1515/znc-1983-9-1018.
  • Warnecke D, Heinz E. Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci. 2003;60:919–941. doi:10.1007/s00018-003-2243-4.
  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Axelsen KB. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol. 2003;132(2):618–628. doi:10.1104/pp.103.021923.
  • Nintemann SJ, Palmgren M, López-Marqués RL. Catch you on the flip side: a critical review of flippase mutant phenotypes. Trends Plant Sci. 2019;24:468–478. doi:10.1016/j.tplants.2019.02.002.
  • Gomès E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG. Chilling tolerance in arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell. 2000;12. doi:10.1105/tpc.12.12.2441.
  • López-Marqués RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit. Mol Biol Cell. 2010;21(5):791–801. doi:10.1091/mbc.e09-08-0656.
  • Poulsen LR, López-Marqués RL, Pedas PR, McDowell SC, Brown E, Kunze R, Palmgren M. A phospholipid uptake system in the model plant Arabidopsis thaliana. Nat Commun. 2015;6(1):7649. doi:10.1038/ncomms8649.
  • Guo Z, Lu J, Wang X, Zhan B, Li W, Ding S-W. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis. Proc Natl Acad Sci. 2017;114(6):1377–1382. doi:10.1073/pnas.1614204114.
  • Zhu B, Gao H, Xu G, Wu D, Song S, Jiang H, Xie D. Arabidopsis ALA1 and ALA2 mediate RNAi-based antiviral immunity. Front Plant Sci. 2017;8:422. doi:10.3389/fpls.2017.00422.
  • McDowell SC, López-Marqués RL, Poulsen LR, Palmgren MG, Harper JF. Loss of the arabidopsis thaliana P4-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development. PLoS One. 2013;8(5):e62577. doi:10.1371/journal.pone.0062577.
  • Underwood W, Ryan A, Somerville SC. An arabidopsis lipid flippase is required for timely recruitment of defenses to the host-pathogen interface at the plant cell surface. Mol Plant. 2017;10(6):805–820. doi:10.1016/j.molp.2017.04.003.
  • Zhang X, Oppenheimer DG. IRREGULAR TRICHOME BRANCH 2 (ITB2) encodes a putative aminophospholipid translocase that regulates trichome branch elongation in Arabidopsis. Plant J. 2009;60(2):195–206. doi:10.1111/j.1365-313X.2009.03954.x.
  • McDowell SC, López-Marqués RL, Cohen T, Brown E, Rosenberg A, Palmgren MG, Harper JF. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. Front Plant Sci. 2015;6:197. doi:10.3389/fpls.2015.00197.
  • Botella C, Sautron E, Boudiere L, Michaud M, Dubots E, Yamaryo-Botté Y, Jouhet J. ALA10, a phospholipid flippase, controls FAD2/FAD3 desaturation of phosphatidylcholine in the ER and affects chloroplast lipid composition in arabidopsis thaliana. Plant Physiol. 2016;170(3):1300–1314. doi:10.1104/pp.15.01557.
  • Zhang X, Adamowski M, Marhava P, Tan S, Zhang Y, Rodriguez L, Zwiewka M, Pukyšová V, Sánchez AS, Raxwal VK, et al. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN Auxin transporters. Plant Cell. 2020;32(5):1644. doi:10.1105/tpc.19.00869.
  • Pinneh EC, Mina JG, Stark MJR, Lindell SD, Luemmen P, Knight MR, steel PG, Denny PW. The identification of small molecule inhibitors of the plant inositol phosphorylceramide synthase which demonstrate herbicidal activity. Sci Rep. 2019;9(1):1–8. doi:10.1038/s41598-019-44544-1.
  • Körschen HG, Yildiz Y, Raju DN, Schonauer S, Bönigk W, Jansen V, Kremmer E, Kaupp UB, Wachten D. The non-lysosomal β-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem. 2013;288(5):3381–3393. doi:10.1074/jbc.M112.414714.
  • Lynch DV, Phinney AJ. The transbilayer distribution of glucosylceramide in plant plasma membrane. In: Plant lipid metabolism. 1995; p. 239–241. doi:10.1007/978-94-015-8394-7_66.
  • Tjellström H, Hellgren LI, Wieslander Å, Sandelius AS. Lipid asymmetry in plant plasma membranes: phosphate deficiency‐induced phospholipid replacement is restricted to the cytosolic leaflet. Faseb J. 2010;24(4):1128–1138. doi:10.1096/fj.09-139410.
  • Lynch DV, Steponkus PL. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma)1. Plant Physiol. 1987;83(4):761–767. doi:10.1104/pp.83.4.761.
  • Sperling P, Franke S, Lüthje S, Heinz E. Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem. 2005;43(12):1031–1038. doi:10.1016/j.plaphy.2005.10.004.
  • Roland BP, Naito T, Best JT, Arnaiz-Yépez C, Takatsu H, Yu RJ, Shin HW, Graham TR. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J Biol Chem. 2019;294(6):1794–1806. doi:10.1074/jbc.RA118.005876.
  • Zienkiewicz A, Gömann J, König S, Herrfurth C, Liu Y, Meldau D, Feussner I. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone‐dependent plant cell death programmes. New Phytol. 2020;226(1):170–188. doi:10.1111/nph.16336.
  • Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem. 2012;287(11):8286–8296. doi:10.1074/jbc.M111.274274.
  • Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM. Involvement of sphingosine kinase in plant cell signalling. Plant J. 2008;56(1):64–72. doi:10.1111/j.1365-313X.2008.03579.x.
  • Hicks AA, Pramstaller PP, Johansson Å, Vitart V, Rudan I, Ugocsai P, Aulchenko Y ,Franklin CS, Liebisch G, Erdmann J, et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 2009;5(10):e1000672. doi:10.1371/journal.pgen.1000672.
  • Watanabe T, Tani M, Ishibashi Y, Endo I, Okino N, Ito M. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae. Glycobiology. 2015;25(10):1079–1089. doi:10.1093/glycob/cwv045.
  • Dickson RC, Lester RL. Yeast sphingolipids. Biochimica Et Biophysica Acta Gen Subj. 1999;1426:347–357. doi:10.1016/S0304-4165(98)00135-4.
  • Saito K, Takakuwa N, Ohnishi M, Oda Y. Presence of glucosylceramide in yeast and its relation to alkali tolerance of yeast. Appl Microbiol Biotechnol. 2006;71(4):515–521. doi:10.1007/s00253-005-0187-3.
  • Hu G, Caza M, Bakkeren E, Kretschmer M, Bairwa G, Reiner E, Kronstad J. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol. 2017;19:6. doi:10.1111/cmi.12718.
  • Ishibashi Y, Ikeda K, Sakaguchi K, Okino N, Taguchi R, Ito M. Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J Biol Chem. 2012;287(1):368–381. doi:10.1074/jbc.M111.311340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.