1,070
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1795580 | Received 28 Apr 2020, Accepted 07 Jul 2020, Published online: 20 Jul 2020

References

  • Burdon-Sanderson JS. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula. Proc R Soc London. 1873;21:1–9.
  • Darwin C. Insectivorous plants. New York (NY): D Appleton & Company; 1875. doi:10.5962/bhl.title.99933.
  • Bose JC. Nervous mechanism of plants.. New York (NY).: Longmans, Green and Co.; 2011. doi:10.5962/bhl.title.139322.
  • Pickard BG. Action potentials in higher plants. Bot Rev. 1973;39:172–201.
  • Wright JP, Fisher DB. Measurement of the sieve tube membrane potential. Plant Physiol. 1981;67(4):845–848. doi:10.1104/PP.67.4.8456.
  • Oyarce P, Gurovich L. Electrical signals in avocado trees: responses to light and water availability conditions. Plant Signal Behav. 2010;5(1):34–41. doi:10.4161/psb.5.1.10157.
  • Datta P, Palit P. Relationship between environmental factors and diurnal variation of bioelectric potentials of an intact jute plant. Curr Sci. 2004:87;680–683.
  • Gurovich LA, Hermosilla P. Electric signalling in fruit trees in response to water applications and light–darkness conditions. J Plant Physiol. 2009;166(3):290–300. doi:10.1016/j.jplph.2008.06.004.
  • Rhodes JD, Thain JF, Wildon DC. The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta. 1996;200(1):50–57. doi:10.1007/BF00196648.
  • Volkov AG, Adesina T, Jovanov E. Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav. 2007;2(3):139–145. doi:10.4161/psb.2.3.4217.
  • Pyatygin SS, Opritov VA, Vodeneev VA. Signaling role of action potential in higher plants. Russ J Plant Physiol. 2008;55(2):285–291. doi:10.1134/S1021443708020179.
  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 2006;11(8):413–419. doi:10.1016/j.tplants.2006.06.009.
  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH. System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol. 2009;149(3):1593–1600. doi:10.1104/pp.108.133884.
  • Schaller A, Oecking C. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell. 1999;11(2):263–272. doi:10.2307/3870855.
  • Fromm J, Lautner S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2007;30(3):249–257. doi:10.1111/J.1365-3040.2006.01614.X.
  • Gelli A, Higgins VJ, Blumwald E. Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol. 1997;113(1):269–279. doi:10.1104/pp.113.1.269.
  • Stankovic B, Zawadzki T, Davies E. Characterization of the variation potential in sunflower. Plant Physiol. 1997;115(3):1083–1088. doi:10.1104/pp.115.3.1083.
  • Mwesigwa J, Collins DJ, Volkov AG. Electrochemical signaling in green plants: effects of 2, 4-dinitrophenol on variation and action potentials in soybean. Bioelectrochemistry. 2000;51(2):201–205. doi:10.1016/S0302-4598(00)00075-1.
  • Sukhova E, Akinchits E, Sukhov V. Mathematical models of electrical activity in plants. J Memb R Biol. 2017;250(5):407–423. doi:10.1007/s00232-017-9969-7.
  • Love CJ, Zhang S, Mershin A. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil. PloS One. 2008;3:8.
  • Gora EM, Yanoviak SP. Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Can J For Res. 2015;45(3):236–245. doi:10.1139/cjfr-2014-0380.
  • Horwitz W. The theory of electrokinetic phenomena. J Chem Educ. 1939;16(11):519. doi:10.1021/ed016p519.
  • Gibert D, Le Mouël JL, Lambs L, Nicollin F, Perrier F. Sap flow and daily electric potential variations in a tree trunk. Plant Sci. 2006;171(5):572–584. doi:10.1016/j.plantsci.2006.06.012.
  • Gil PM, Gurovich L, Schaffer B. The electrical response of fruit trees to soil water availability and diurnal light-dark cycles. Plant Signal Behav. 2008;3(11):1026–1029. doi:10.4161/psb.6786.
  • Gil PM, Gurovich L, Schaffer B, García N, Iturriaga R. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia. Plant Signal Behav. 2009;4(2):100–108. doi:10.4161/psb.4.2.7872.
  • Ríos-Rojas L, Morales-Moraga D, Alcalde JA, Gurovich LA. Use of plant woody species electrical potential for irrigation scheduling. Plant Signal Behav. 2015;10(2):e976487. doi:10.4161/15592324.2014.976487.
  • Cardoso SS, Carrondo LB, Marques JM, Narciso PN, Rocha MJ, Rodrigues IN, Soares A. (2004). Monitorization of the electrical signal generated by a tree. February 2004 – 4th luso-spanish assembly on geodesy and geophysics.
  • Koppán A. Measurement of electric potential difference on trees. Acta Biologica Szegediensis. 2002;46:37–38.
  • Le Mouël JL, Gibert D, Poirier JP. On transient electric potential variations in a standing tree and atmospheric electricity. C R Geosci. 2010;342(2):95–99. doi:10.1016/j.crte.2009.12.001.
  • Morat P, Le Mouël JL, Granier A. Electrical potential on a tree. A measurement of the sap flow? Comptes rendus de l’Académie des sciences Série 3, Sciences de la vie. 1994;317:98–101.
  • Gindl W, Loppert HG, Wimmer R. Relationship between streaming potential and sap velocity in Salix Alba L. PHYTON-HORN-. 1999;39:217–224.
  • Koppán A, Szarka L, Wesztergom V. Temporal variation of electrical signal recorded in a standing tree. Acta Geodaetica et Geophysica Hungarica. 1999;34:169–180.
  • Koppan A (2004). Variations of the natural electric potential differences occurring on tree trunks and their relationship with the xylem sap flow. PhD Thesis. University of West Hungary. Sopron, Hungary.
  • Volkov AG, Ranatunga DRA. Plants as environmental biosensors. Plant Signal Behav. 2006;1:105–115.
  • AAVV. (2008). Distribution map of aleppo pine. EUFORGEN 2009,[Retrieved 2020 July 16]. www.euforgen.org
  • De Luis M, Čufar K, Di Filippo A, Novak K, Papadopoulos A, Piovesan G, Smith KT. Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis). PLoS One. 2013;8:12. doi:10.1371/journal.pone.0083550.
  • Fadi B, Semerci H, Vendramin GG. 2003. EUROFORGEN technical guidelines for genetic conservation and use for aleppo pine (Pinus halepensis) and brutia pine (Pinus brutia).  IPGRI, International plant genetic resources institute. Rome (Italy). p. 6. ISBN 92-9043-571-2.
  • Mauri A, Di Leo M, de Rigo D, Caudullo G. 2016. Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European Atlas of Forest TreeSpecies. Publ. Off. EU, Luxembourg. p. e0166b8+.
  • Pausas JG, Ribeiro E, Vallejo R. Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. For Ecol Manage. 2004;203(1–3):251–259. doi:10.1016/J.FORECO.2004.07.061.
  • IFN3. Tercer inventario forestal nacional (3rd National Forest Inventory of Spain). Ministerio para la Transformación Ecológica y el Reto Demográfico; Spain, 2007. [Retrieved 202 July 16]  https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn3.aspx
  • Linán ID, Gutiérrez E, Heinrich I, Andreu-Hayles L, Muntán E, Campelo F, Helle G. Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. Eur J For Res. 2012;131:933–944.
  • Moliner JIU. Análisis del régimen de incendios forestales en los montes de Portaceli durante el siglo XX (Serra, Valencia). Cuadernos De Geografía. 2004;76:50–59.
  • Saket M, Altrell D, Vuorinen P, Dalsgaard S, Andersson,National forest inventory (field manual template) The Forest Resources Assessment (FRA), , http://www.fao.org/3/ae578e/AE578E06.htm.
  • Puratich F, Wilson H (2013). Valorización integral de la biomasa leñosa agroforestal a lo largo del gradiente altitudinal en condiciones mediterráneas (Doctoral dissertation).
  • Oliver-Villanueva JV, Becker G. Verwendungsrelevante Holzeigenschaften der Esche (Fraxinus excelsior L.) und ihre Variabilität im Hinblick auf Alter und Standraum. Forst und Holz. 1993;48:387–391.
  • Hapla F, Oliver-Villanueva JV, González-Molina JM. Effect of silvicultural management on wood quality and timber utilisation of Cedrus atlantica in the European Mediterranean area. Holz als Roh-und Werkstoff. 2000;58(1–2):1–8. doi:10.1007/s001070050377.
  • Hapla F, Saborowski J. Planning of sample size for wood anatomical investigations. Holz als Roh-und Werkstoff. 1987;45:141–144.
  • Seeling U, Sachsse H (1991). Abnorme Kernbildung bei Rotbuche und ihr Einfluß auf holzbiologische und holztechnologische Kenngrößen [Abnormal heartwood formation in beech and its influence on the biological and technological features of the wood] (Doctoral dissertation, Doctoral thesis, 2nd).
  • Sauter U. Technologische Holzeigenschaften der Douglasie (Pseudotsuga menziesii (Mirb.) Franco) als Ausprägung unterschiedlicher Wachstumsbedingungen. Freiburg i. Breisgau, Germany, 1992.
  • Dix B, Roffael E, Becker G, Gruss K. Properties of pulps prepared from poplar wood of different clones, sites and ages. Papier. 1992;46:583–592.
  • Wobst J (1995). Auswirkungen von Standortwahl und Durchforstungsstrategie auf verwertungsrelvante Holzeigenschaften der Douglasie (Pseudotsuga menziesii (Mirb. (Franco)) (Doctoral dissertation). UNIVERSITY OF GÖTTINGEN.
  • Peters S (1996). Untersuchungen über die Holzeigenschaften der Stieleiche (Quercus robur L.) und ihre Beeinflussung durch die Bestandesdichte. Papierflieger, UNIVERSITY OF GÖTTINGEN.
  • Krcmar P, Kuritka I, Maslik J, Urbanek P, Bazant P, Machovsky M, Merka P. Fully inkjet-printed cuo sensor on flexible polymer substrate for alcohol vapours and humidity sensing at room temperature. Sensors. 2019;19(14):3068. doi:10.3390/s19143068.
  • Wang K, Zhang S. Extracellular electron transfer modes and rate-limiting steps in denitrifying biocathodes. Environ Sci Pollut Res. 2019;26(16):16378–16387. doi:10.1007/s11356-019-05117-x.
  • DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 1999.
  • Prutchi D, Norris M. Design and development of medical electronic instrumentation. Hoboken (New Jersey): John Wiley & Sons; 2004. p. 326–334.. doi:10.1002/0471681849.
  • Woodward S, Pearce RB. The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiol Mol Plant Pathol. 1988;33(1):127–149. doi:10.1016/0885-5765(88)90049-5.
  • Mullick DB. A new tissue essential to necrophylactic periderm formation in the bark of four conifers. Can J Bot. 1975;53(21):2443–2457. doi:10.1139/b75-271.
  • Abbott DT, Crossley DA Jr. Woody litter decomposition following clear‐cutting. Ecology. 1982;63(1):35–42. doi:10.2307/1937028.
  • Fensom DS. The bioelectric potentials of plants and their functional significance: V. Some daily and seasonal changes in the electrical potential and resistance of living trees. Can J Bot. 1963;41(6):831–851. doi:10.1139/b63-068.
  • Sellin A. Variation in sapwood thickness of Picea abies in Estonia depending on the tree age. Scand J For Res. 1991;6(1–4):463–469. doi:10.1080/02827589109382683.
  • Rosenvald K, Ostonen I, Uri V, Varik M, Tedersoo L, Lohmus K. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence. Eur J For Res. 2013;132(2):219–230. doi:10.1007/s10342-012-0669-7.
  • Montero G, Cañellas I, Ruiz-Peinado R. Growth and yield models for Pinus halepensis Mill. For Syst. 2002;10:179–201.
  • Delgado ÁV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J. Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci. 2007;309(2):194–224. doi:10.1016/j.jcis.2006.12.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.