746
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Phytotoxic mechanism of allelochemical liquiritin on root growth of lettuce seedlings

, , &
Article: 1795581 | Received 04 Jun 2020, Accepted 03 Jul 2020, Published online: 21 Jul 2020

References

  • Damle M. Glycyrrhiza glabra (liquorice)-A potent medicinal herb. Int J Herb Med. 2014;2:1–6.
  • Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B. 2015;5:310–315. doi:10.1016/j.apsb.2015.05.005.
  • Hosseinzadeh H, Nassiri-Asl M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review. Phytother Res. 2015;29:1868–1886. doi:10.1002/ptr.5487.
  • Hayashi H, Sudo H. Economic importance of licorice. Plant Biotechnol. 2009;26:101–104. doi:10.5511/plantbiotechnology.26.101.
  • Ishimi Y, Takebayashi J, Tousen Y, Yamauchi J, Fuchino H, Kawano T, Inui T, Yoshimatsu K, Kawahara N. Quality evaluation of health foods containing licorice in the Japanese market. Toxicol Rep. 2019;6:904–913. doi:10.1016/j.toxrep.2019.08.013.
  • Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Marappan G, et al. Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: current knowledge and prospects. Animals. 2019;9:536. doi:10.3390/ani9080536.
  • Zhang ZY, Lin WX. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin J Eco-Agric. 2009;17:189–196. doi:10.3724/SP.J.1011.2009.00189.
  • Ren X, Yan ZQ, He XF, Li XZ, Qin B. Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis fisch: discovery of the autotoxic compounds of a traditional herbal medicine. Ind Crop Prod. 2017;97:302–307. doi:10.1016/j.indcrop.2016.12.035.
  • Mamedov NA, Egamberdieva D. Phytochemical constituents and pharmacological effects of licorice: A review. Plant Hum Health. 2019;3:1–21.
  • Navaey HN, Tilebeni HG, Ghaderi M, Sanei M. Allelopathic effect of water extract of liquorice (Glycyrrhiza glabra) on germination and chlorophyll content of maize. J Nov Appl Sci. 2013;2:1220–1223.
  • Liu F, Teng F, Zhang WD, Li L. Allelopathy of Glycyrrhiza pallidiflora maxim and its impact on seed germination and seedling growth of crops. Hubei Agric Sci. 2009;4:904–905.
  • Zhang DD, Liang XH, Wang J. Effect of aqueous extracts from Glycyrrhiza uralensis Fisch seeds on its seed germination and genes relative expression of GuSQS1 and GubAS . J Nucl Ag Ric Sci. 2016;30:28–34.
  • Zhao P, Wang W, Zhao Q. Study on allelopathic effects of five Chinese herbal medicines on Astragalus membranaceus. North Horticul. 2013;22:160–163.
  • Xie R, Gao CC, Yang XZ, Wu SN, Wang HG, Zhang JL, Yan W, Ma T. Combining TRAIL and liquiritin exerts synergistic effects against human gastric cancer cells and xenograft in nude mice through potentiating apoptosis and ROS generation. Biomed Pharmacother. 2017;93:948–960. doi:10.1016/j.biopha.2017.06.095.
  • Wang JR, Li TZ, Wang C, Li SM, Luo YH, Piao XJ, Feng YC, Zhang Y, Xu WT, Zhang Y, et al. Liquiritin inhibits proliferation and induces apoptosis in HepG2 hepatocellular carcinoma cells via the ROS-mediated MAPK/AKT/NF-κB signaling pathway. N -S Arch Pharmacol. 2020. doi:10.1007/s00210-019-01763-7.
  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800. doi:10.3389/fpls.2019.00800.
  • Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi:10.1242/dev.164376.
  • Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol. 2018;69:209–236. doi:10.1146/annurev-arplant-042817-040322.
  • Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: roots in plant development. Plant Divers. 2020;42:33–43. doi:10.1016/j.pld.2019.10.002.
  • Garnczarska M. Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Biochem. 2005;43:583–590. doi:10.1016/j.plaphy.2005.05.003.
  • Alché JD. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol. 2019;23:101136. doi:10.1016/j.redox.2019.101136.
  • Huang Z, Sheng Y, Chen M, Hao Z, Hu F, Ji L. Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system. Toxicol Appl Pharmacol. 2018;355:18–27. doi:10.1016/j.taap.2018.06.014.
  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482:419–425. doi:10.1016/j.bbrc.2016.10.086.
  • Wei F, Jiang X, Gao H, Gao S. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo. Int J Oncol. 2017;51:1383–1394. doi:10.3892/ijo.2017.4134.
  • Li X, Cai L, Liu J, Ma Y, Kong Y, Li H, Jiang M. Liquiritin suppresses UVB-induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF-κB and MAPK/caspase signaling pathways. Int J Mol Med. 2018;42:1445–1459. doi:10.3892/ijmm.2018.3720.
  • Reichheld JP, Vernoux T, Lardon F, Montagu MV, Inzé D. Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J. 1999;17:647–656. doi:10.1046/j.1365-313X.1999.00413.x.
  • Livanos P, Galatis B, Quader H, Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton. 2012;69:1–21. doi:10.1002/cm.20538.
  • Kaur G, Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol Plant. 2015;59:609–619. doi:10.1007/s10535-015-0549-3.
  • Ben Rejeb K, Abdelly C, Savouré A. How reactive oxygen species and proline face stress together. Plant Physiol Biochem. 2014;80:278–284. doi:10.1016/j.plaphy.2014.04.007.
  • Zhang L, Becker DF. Connecting proline metabolism and signaling pathways in plant senescence. Front Plant Sci. 2015;6:552. doi:10.3389/fpls.2015.00552.
  • Yan ZQ, Wang DD, Cui HY, Zhang DH, Sun YH, Jin H, Li X, Yang X, Guo H, He X, et al. Phytotoxicity mechanisms of two coumarin allelochemicals from Stellera chamaejasme in lettuce seedlings. Acta Physiol Plant. 2016;38:248–258. doi:10.1007/s11738-016-2270-z.
  • Yan ZQ, Wang DD, Ding L, Cui HY, Jin H, Yang XY, Yang JS, Qin B. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings. Plant Physiol Biochem. 2015;88:53–59. doi:10.1016/j.plaphy.2015.01.010.
  • Zhang S, Sun SW, Shi HL, Zhao K, Wang J, Liu Y, Liu XH, Wang W. Physiological and biochemical mechanisms mediated by allelochemical isoliquiritigenin on the growth of lettuce seedlings. Plants. 2020;9:245. doi:10.3390/plants9020245.
  • AlQuraidi AO, Mosa KA, Ramamoorthy K. Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum-Apiaceae). Plants. 2019;8:19. doi:10.3390/plants8010019.
  • Zhang W, Lu LY, Hu LY, Cao W, Sun K, Sun QB, Siddikee A, Shi RH, Dai CC. Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid. Plant Cell Physiol. 2018;59:1889–1904. doi:10.1093/pcp/pcy107.
  • Huang C, Xu L, Sun J, Zhang Z, Fu M, Teng H, Yi K. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L.). J Integr Agr. 2020;19:518–527. doi:10.1016/S2095-3119(19)62781-4.
  • Cheng F, Cheng Z, Meng H, Tang X. The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression. Front Plant Sci. 2016;7:1199. doi:10.3389/fpls.2016.01199.
  • Pan J, Zhu M, Chen H. Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot. 2001;46:71–79. doi:10.1016/S0098-8472(01)00083-1.
  • Tamás L, Šimonovicová M, Huttová J, Mistrík I. Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot. 2004;51:281–288. doi:10.1016/j.envexpbot.2003.11.007.
  • Chen TH, Gusta LV. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol. 1983;73:71–75. doi:10.1104/pp.73.1.71.
  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 2002;128:63–72. doi:10.1104/pp.010417.
  • Frew JE, Jones P, Scholes G. Spectrophotometric determination of hydrogen peroxide and organic hydropheroxides at low concentrations in aqueous solution. Anal Chim Acta. 1983;155:139–150. doi:10.1016/S0003-2670(00)85587-7.
  • Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi:10.1007/s004250050524.
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free prolin for water-stress studies. Plant Soil. 1973;39:205–207. doi:10.1007/BF00018060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.