638
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

Lipopolysaccharides trigger synthesis of the allelochemical sorgoleone in cell cultures of Sorghum bicolor

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1796340 | Received 03 Jul 2020, Accepted 13 Jul 2020, Published online: 30 Jul 2020

References

  • Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing AL, Duke SO. Sorgoleone. Phytochemistry. 2010;71:1–5. doi:10.1016/j.phytochem.2010.03.011.
  • Uddin MR, Thwe AA, Kim YB, Park WT, Chae SC, Park SU. Effects of auxins on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. J Chem Ecol. 2011;39:712–722.
  • Głąb L, Sowiński J, Bough R, Dayan FE. Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. Adv Agron. 2017;145:43–95. 0065-2113. doi:10.1016/bs.agron.2017.05.001.
  • Weston LA, Alsaadawi IS, Baerson SR. Sorghum allelopathy-from ecosystem to molecule. J Chem Ecol. 2013;39:142–153. doi:10.1007/s10886-013-0245-8.
  • Dayan FE, Howell J, Weidenhamer JD. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot. 2009;60:2107–2117. doi:10.1093/jxb/erp082.
  • Dayan FE. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta. 2006;224:339–346. doi:10.1007/s00425-005-0217-5.
  • Cook D, Rimando AM, Clemente TE, Schroder J, Dayan FE, Nanayakkara NPD, Pan Z, Noonan BP, Fishbein M, Abe I, et al. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell. 2010;22(3):867–887. doi:10.1105/tpc.109.072397.
  • Mareya CR, Tugizimana F, Di Lorenzo F, Silipo A, Piater LA, Molinaro A, Dubery IA. Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis, and the structural elucidation of the lipid A and O-polysaccharide chain of the LPS. Sci Rep. 2020;10:7626. doi:10.1038/s41598-020-64186-y.
  • Yoneyama K, Natsume M. Allelochemicals for plant–plant and plant–microbe interactions. In: Mori K, editor. Comprehensive natural products II. Chemistry and biology. Vol. 4. Amsterdam, The Netherlands: Elsevier; 2010. p. 539–556. doi:10.1016/B978-0-12-409547-2.02802-X.
  • Uddin MR, Thwe AA, Kim YB, Park WT, Chae SC, Park SU. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. J Chem Ecol. 2013;39:712–722. doi:10.1007/s10886-013-0299-7.
  • Kagan IA, Rimando AM, Dayan FE. Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J Agri Food Chem. 2003;51:7589–7595. doi:10.1021/jf034789j.
  • Jesudas AP, Kingsley JS, Ignacimuthu S. Sorgoleone from Sorghum bicolor as a potent bioherbicide. Res J Recent Sci. 2014;3:32–36.
  • Mareya CR, Tugizimana F, Piater LA, Steenkamp PA, Dubery IA, Madala NE. Untargeted metabolomics reveal defensome-related metabolic reprogramming in Sorghum bicolor against infection by Burkholderia andropogonis. Metabolites. 2019:9. doi:10.3390/metabo9010008.
  • Madala NE, Steenkamp PA, Piater LA, Dubery IA. Different metabolite distribution patterns in isonitrosoacetophenone-elicited tobacco and sorghum cells as revealed by multivariate statistical models. Springer Plus Online. 2014;3:254. doi:10.1186/2193-1801-3-254.
  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, et al. Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):211–221. doi:10.1007/s11306-007-0082-2.
  • Brown M, Wedge DC, Goodacre R, Kell DB, Baker PN, Kenny LC, Mamas MA, Neyses L, Dunn WB. Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics. 2011;27(8):1108–1112. doi:10.1093/bioinformatics/btr079.
  • Grapov D, Wanichthanarak K, Fiehn O. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics. 2015;31:2757–2760. doi:10.1093/bioinformatics/btv194.
  • Bolton EE, Kim S, Bryant SH. PubChem3D: similar conformers. J Cheminform. 2011;3:13. doi:10.1186/1758-2946-3-13.
  • Smoot ME, Ono K, Rucscheinski J, Wang P-L IT. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–432. doi:10.1093/bioinformatics/btq675.
  • Ncube EN, Steenkamp PA, Madala NE, Dubery IA. Metabolite profiling of the undifferentiated cultured cells and differentiated leaf tissues of Centella asiatica. Plant Cell Tissue Organ Culture (PCTOC). 2017;129:431–443. doi:10.1007/s11240-017-1189-4.
  • Khanh TD, Anh LH, Nghia LT, Trung KH, Hien PB, Trung DM, Xuan TD. Allelopathic responses of rice seedlings under some different stresses. Plants. 2018;7:1–18. doi:10.3390/plants7020040.
  • Li Z-H, Wang Q, Ruan X, Pan C-D, Jiang D-A. Phenolics and plant allelopathy. Molecules. 2010;15:8933–8952. doi:10.3390/molecules15128933.
  • Albuquerque MB, Santos RC, Lima LM, de Albuquerque Melo Filho P, Nogueira RJMC, Câmara CAG, Ramos AdR. Allelopathy, an alternative tool to improve cropping systems, A review. Agron Sustainable Dev. 2011;31:379–395. doi:10.1051/agro/2010031.
  • Tibugari H, Chiduza C, Mashingaidze AB, Mabasa S. Quantification of sorgoleone in sorghum accessions from eight southern African countries. South Afr J Plant Soil. 2018;36:41–50. doi:10.1080/02571862.2018.1469794.
  • Yang X, Owens TG, Scheffler BE, Westoni LA. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol. 2004;30:199213. doi:10.1023/B:JOEC.0000013191.35181.03.
  • Uddin MR, Park KW, Kim YK, Park SU, Pyon JY. Enhancing sorgoleone levels in grain sorghum root exudates. J Chem Ecol. 2010;36:914–922. doi:10.1007/s10886-010-9829-8.
  • Uddin MR, Kim YK, Park SU, Pyon JY. Herbicidal activity of sorgoleone from grain sorghum root exudates and its contents among sorghum cultivars. Korean J Weed Sci. 2009;29:229–236.
  • Hamany Djande CY, Pretorius C, Tugizimana F, Piater LA, Dubery IA. Metabolomics: a tool for cultivar phenotyping and investigation of grain crops. Agronomy. 2020;10:831. doi:10.3390/agronomy10060831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.