1,108
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Physiological and proteomics responses of nitrogen assimilation and glutamine/glutamine family of amino acids metabolism in mulberry (Morus alba L.) leaves to NaCl and NaHCO3 stress

, , , , , , & show all
Article: 1798108 | Received 01 Jun 2020, Accepted 22 Jun 2020, Published online: 30 Jul 2020

References

  • Aslam M, Huffaker RC. Dependency of nitrate reduction on soluble carbohydrates in primary leaves of barley under aerobic conditions. Plant Physiol. 1984;75(3):1–11. doi:10.1104/pp.75.3.623.
  • Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 1999;22:583–621.
  • Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santa-Cruz DM, Tomaro ML. Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environ Exp Bot. 2008;64(1):83–89. doi:10.1016/j.envexpbot.2008.03.005.
  • Coleman HD, Cánovas FM, Man HM, Kirby EG, Mansfield SD. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula×alba) (717-1B4). Plant Biotechnol J. 2012;10(7):883–889. doi:10.1111/j.1467-7652.2012.00714.x.
  • Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant. 2010;3(6):973–996. doi:10.1093/mp/ssq049.
  • Xu G, Fan X, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol. 2012;63(1):153–182. doi:10.1146/annurev-arplant-042811-105532.
  • Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol. 2012;12(1):194. doi:10.1186/1471-2229-12-194.
  • Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci. 2016;7:78. doi:10.3389/fpls.2016.00078.
  • Rees JD, Ingle RA, Smith JAC. Relative contributions of nine genes in the pathway of histidine biosynthesis to the control of free histidine concentrations in Arabidopsis thaliana. Plant Biotechnol J. 2010;7(6):499–511. doi:10.1111/j.1467-7652.2009.00419.x.
  • Hong Z, Lakkineni K, Zhang Z, Verma DP. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 2000;122(4):1129–1136. doi:10.1104/pp.122.4.1129.
  • Bhaskara GB, Yang TH, Verslues PE. Dynamic proline metabolism: importance and regulation in water limited environments. Front Plant Sci. 2015;6:484. doi:10.3389/fpls.2015.00484.
  • Biancucci M, Mattioli R, Moubayidin L, Sabatini S, Costantino P, Trovato M. Proline affects the size of the root meristematic zone in Arabidopsis. BMC Plant Biol. 2015;15(1):263. doi:10.1186/s12870-015-0637-8.
  • László S, Arnould S. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15:89–97.
  • Lu Z, Becker DF. Connecting proline metabolism and signaling pathways in plant senescence. Front Plant Sci. 2015;6:522.
  • Theocharis A, Clément C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235(6):1091–1105. doi:10.1007/s00425-012-1641-y.
  • Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum. 2015;59(4):609–619. doi:10.1007/s10535-015-0549-3.
  • Cuin TA, Shabala S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol. 2005;46(12):1924–1933. doi:10.1093/pcp/pci205.
  • Nounjan N, Nghia PT, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol. 2012;169(6):569–604. doi:10.1016/j.jplph.2012.01.004.
  • Evelin H, Giri B, Kapoor R. Ultrastructural evidence for AMF mediated salt stress mitigation inTrigonella foenum-graecum. Mycorrhiza. 2013;23(1):71–86. doi:10.1007/s00572-012-0449-8.
  • Kishor PBK, Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014;37(2):300–311. doi:10.1111/pce.12157.
  • Subramanyam S, Sardesai N, Minocha SC, Zheng C, Shukle RH, Williams CE. Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat. BMC Plant Biol. 2015;15(1):3. doi:10.1186/s12870-014-0396-y.
  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot. 2010;106(5):791–802. doi:10.1093/aob/mcq170.
  • Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 2009;104(7):1263–1280. doi:10.1093/aob/mcp251.
  • Kusano T, Yamaguchi K, Berberich T. Advances in polyamine research in 2007. J Plant Res. 2007a;120(3):345–350. doi:10.1007/s10265-007-0074-3.
  • Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci. 2014;5:175. doi:10.3389/fpls.2014.00175.
  • S A R, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S, et al. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun. 2015;6:7879.
  • Ramesh SA, Kamran M, Sullivan W, Chirkova L, Okamoto M, Degryse F, McLaughlin M, Gilliham M, Tyerman SD. Aluminium-activated malate transporters can facilitate GABA transport. Plant Cell. 2018;30(5):1147–1164. doi:10.1105/tpc.17.00864.
  • Gut H, Dominici P, Pilati S, Astegno A, Petoukhov MV, Svergun DI, Grütter MG, Capitani G. A common structural basis for pH-and calmodulin-mediated regulation in plant glutamate decarboxylase. J Mol Biol. 2009;392(2):334–351. doi:10.1016/j.jmb.2009.06.080.
  • Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ. 2010;33(2):149–162. doi:10.1111/j.1365-3040.2009.02065.x.
  • Yang A, Cao S, Yang Z, Cai Y, Zheng Y. γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem. 2011;129(4):1619–1622. doi:10.1016/j.foodchem.2011.06.018.
  • Jr SMM. Arginine metabolism: boundaries of our knowledge. Journal of Nutr. 2007;137(6):1602–1609. doi:10.1093/jn/137.6.1602S.
  • Jr SMM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol. 2009;157(6):922–930. doi:10.1111/j.1476-5381.2009.00278.x.
  • Sakiko O, Dietmar F, Maurizio T,T, Forlani G. Editorial: amino acids of the glutamate family: functions beyond primary metabolism. Front Plant Sci. 2016;7:318.
  • Doi K, Kojima T, Makino M, Kimura Y, Fujimoto Y. Studies on the constituents of the leaves of Morus alba L. Chem Pharm Bull (Tokyo). 2001;49(2):151–153. doi:10.1248/cpb.49.151.
  • Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, Yamane Y. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem. 2006;97(1):25–31. doi:10.1016/j.foodchem.2005.03.019.
  • Li X, Sun ML, Zhang HH, Xu N, Sun GY. Use of Mulberry-soybean intercropping in salt-alkali soil improves the diversity of soil bacterical community. Microbiol Biotechnol. 2016;984:1148–1156.
  • Zhang HH, Li X, Zhang SB, Yin ZP, Zhu WX, Li JB, Meng L, Zhong HX, Xu N, Wu YN, et al. Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII function responses. Frontiers Plant Sci. 2018a;9:1806.
  • Zhang HH, Shi GL, Shao JY, Xin L, Ma-bo L, Liang M, Nan X, Guang-yu S. Photochemistry and proteomics of mulberry(Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotoxicol Environ Saf. 2019;184(30):109624. doi:10.1016/j.ecoenv.2019.109624.
  • Zhang HH, Xu N, Li X, Jin WW, Tian Q, Xu N, Sun GY. Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco. Int J Agri Biol. 2017;19(4):735–745. doi:10.17957/IJAB/15.0348.
  • Das SK, Patra JK, Thatoi H. Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. Int Rev Hydrobiol. 2016;101(1–2):3–19. doi:10.1002/iroh.201401744.
  • Kim S, Rayburn AL, Voigt T, Parrish A, Lee DK. Salinity Effects on germination and plant growth of prairie cordgrass and switchgrass. BioEnergy Res. 2012;5(1):225–235. doi:10.1007/s12155-011-9145-3.
  • Song T, Xu H, Sun N, Jiang L, Tian P, Yong Y, Yang W, Cai H, Cui G. Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress. Front Plant Sci. 2017;8:1208. doi:10.3389/fpls.2017.01208.
  • Zhang HH, Xu N, Wu XY, Wang J, Ma S, Li X, Sun G. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J Plant Interact. 2018b;13(1):506–513. doi:10.1080/17429145.2018.1526978.
  • Mansour MMF, Ali EF. Evaluation of proline functions in saline conditions. Phytochemistry. 2017;140:52–68. doi:10.1016/j.phytochem.2017.04.016.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Zhang HH, Wang Y, Li X, Guoqiang H, Yanhui C, Zhiyuan T, Jieyu S, Nan X, Guangyu S. Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicol Environ Saf. 2020a;190:110164. doi:10.1016/j.ecoenv.2020.110164.
  • Zhang HH, Li X, Wang Y, Mabo L, Yue W, Meijun A, yuehui Z, Guanjun L, Nan X, Guangyu S, et al. Physiological and proteomic responses of reactive oxygen species and antioxidant machinery in leaves of mulberry (Morus alba L.) to NaCl and NaHCO3 stress. Ecotoxicol Environ Saf. 2020b;193:110259. doi:10.1016/j.ecoenv.2020.110259.
  • Zhang HH, Li X, Che YH,Wang Y, Li MB, Yang RY, Xu N, Sun GY. A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline-alkali mixed stress. Trees-Struct Funct. 2020c;34(3):693–706.
  • Bao SD. Soil analysis. Beijing: China agriculture press; 2005.
  • Wang JY, Ao H, Zhang J. The echnology and Experiment Principle Of Plant Physiology. Haerbin: Northeast Forestry University press; 2003.
  • Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24(12):1337–1344. doi:10.1046/j.1365-3040.2001.00778.x.
  • Botrel A, Magne C, Kaiser WM. Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem. 1996;32:645–652.
  • Datta R, Sharma R. Temporal and spatial regulation of nitrate reductase and nitrite reductase in greening maize leaves. Plant Sci. 1999;144(2):77–83. doi:10.1016/S0168-9452(99)00057-6.
  • Malagoli M, Canal AD, Quaggiotti S, Pegoraro P, Bottacin A. Differences in nitrate and ammonium uptake between Scots pine and European larch. Plant Soil. 2000;221(1):1–3.
  • Fan HF, Guo SR, Du CX, Jiao YS, Li NN, Duan JJ. Effects of exogenous NO on NO3−/NH4+ and soluble protein contents and NR activities in cucumber seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica. 2006;26(10):2063–2068.
  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot. 2010;105(7):1141–1157. doi:10.1093/aob/mcq028.
  • Appenroth KJ, Meco R, Jourdan V, Lillo C. Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 2000;159(1):51–56. doi:10.1016/S0168-9452(00)00323-X.
  • Ortega JL. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol. 2001;126(1):109–121. doi:10.1104/pp.126.1.109.
  • Sechley KA, Yamaya T, Oaks A. Compartmentation of nitrogen assimilation in higher plants. Int Rev Cytol. 1992;134:85–163.
  • Medina A, Roldán A, Azcón R. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manage. 2010;91(12):2547–2553. doi:10.1016/j.jenvman.2010.07.008.
  • Miransari M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 2010;12(4):563–569. doi:10.1111/j.1438-8677.2009.00308.x.
  • Kishor P, Hong Z, Miao GH, Hu C, Verma D. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995;108(4):1387–1394. doi:10.1104/pp.108.4.1387.
  • Milosz R, Boguslaw N, Giuseppe F, Zbigniew Z. The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. Front Plant Sci. 2015;6:869.
  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 1997;38(10):1095–1102. doi:10.1093/oxfordjournals.pcp.a029093.
  • Song SQ, Lei YB, Tian XR. Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian J Plant Physiol. 2005;52(6):793–800. doi:10.1007/s11183-005-0117-3.
  • Chen THH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 2002;5(3):250–257. doi:10.1016/S1369-5266(02)00255-8.
  • Székely G, Ábrahám E, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik S, Schmelzer E, Koncz C, et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008;53(1):18. doi:10.1111/j.1365-313X.2007.03360.x.
  • Junghe HA, Kihong JA, Choonhwan LB, An G. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci. 2004;167(3):417–426. doi:10.1016/j.plantsci.2004.04.009.
  • Gemperlova L, Eder JM, Cvikrová M. Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiol Biochem. 2005;43(4):375–381. doi:10.1016/j.plaphy.2005.02.012.
  • Wang YH, Garvin DF, Kochian LV. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium. **Plant Physiol. 2002;130:1361–1370.
  • Lancien M, Roberts MR. Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant, Cell and Environment, Cell & Environment, 2006, 29(7):1430–1436. doi:10.1111/j.1365-3040.2006.01526.x
  • Bartyzel I, Pelczar K, Paszkowski A. Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biologia Plantarum. 2003;47(2):221–225. doi:10.1023/B:BIOP.0000022255.01125.99.
  • Bown AW, Macgregor KB, Shelp BJ. Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci. 2006;11(9):0–427. doi:10.1016/j.tplants.2006.07.002.
  • Lei P, Xu Z, Liang J, Luo X, Zhang Y, Feng X, Xu H. Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regul. 2016;78(2):233–241. doi:10.1007/s10725-015-0088-0.
  • Shi SQ, Shi Z, Jiang ZP, et al. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: Regulatory roles for H2O2 and ethylene production. Plant Cell and Environment, 2009, 33(2):149–162.doi: doi:10.1111/j.1365-3040.2009.02065.x
  • Turano FJ, Kramer GF, Wang CY. The effect of methionine, ethylene and polyamine catabolic intermediates on polyamine accumulation in detached soybean leaves. Physiol Plant. 2010;101(3):510–518. doi:10.1111/j.1399-3054.1997.tb01031.x.
  • Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34(1):35–45. doi:10.1007/s00726-007-0501-8.
  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav. 2007b;2(4):251–252. doi:10.4161/psb.2.4.3866.
  • Larher FR, Aziz A, Gibon Y, Trotel-Aziz P, Bouchereau A. An assessment of the physiological properties of the so-called compatible solutes using in vitro experiments with leaf discs. Plant Physiol Biochem. 2003;41(6–7):657–666.
  • Yoda H, Hiroi Y, Sano H. Polyamine Oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol. 2006;142(1):193–206. doi:10.1104/pp.106.080515.
  • Yoo TH, Park C-J, Ham B-K, Kim K-J, Paek K-H. Ornithine decarboxylase gene (CaODC1) is specifically induced during TMV-mediated but salicylate-independent resistant response in hot pepper. Plant Cell Physiol. 2004;45(10):1537–1542. doi:10.1093/pcp/pch176.
  • Kumria R, Rajam MV. Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress. J Plant Physiol. 2002;159(9):983–990. doi:10.1078/0176-1617-00822.
  • Mo H, Pua EC. Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea)in response to stress. Physiol Plant. 2002;114(3):439–449. doi:10.1034/j.1399-3054.2002.1140314.x.
  • Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 2001;160(5):869–875. doi:10.1016/S0168-9452(01)00337-5.
  • Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul. 2001;34(1):135–148. doi:10.1023/A:1013343106574.
  • Shao L, Bhatnagar P, Majumdar R, Minochaet R, Minocha SC. Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis. Amino Acids. 2014;46(3):743–757. doi:10.1007/s00726-013-1581-2.
  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T. Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot. 2009;66(3):471–478. doi:10.1016/j.envexpbot.2009.03.014.
  • Yang J, Zhang J, Liu K, Wang Z, Liu L. Involvement of polyamines in the drought resistance of rice. J Exp Bot. 2007;58(6):1545–1555. doi:10.1093/jxb/erm032.
  • Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc National Acad Sci. 2004;101(26):9909–9914. doi:10.1073/pnas.0306974101.
  • Koji Y, Yoshihiro T, Thomas B, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 2006;580(30):6783–6788. doi:10.1016/j.febslet.2006.10.078.
  • Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. 2010;119(3):355–364. doi:10.1034/j.1399-3054.2003.00223.x.
  • Møller IM. Plant mitochondria and oxidative stress: electron transport, nadph turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol. 2001;52(4):561–591. doi:10.1146/annurev.arplant.52.1.561.
  • Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Sofo A. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiologiae Plantarum. 2012;34(1):203–213. doi:10.1007/s11738-011-0819-4.
  • Zhang HH, Xu ZS, Huo YZ, Guo KW, He GQ, Sun HW, Li MB, Li X, Xu N, Sun GY. Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. J Hazard Mater. 2020d;397:122899.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. doi:10.1016/j.plaphy.2010.08.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.