758
Views
2
CrossRef citations to date
0
Altmetric
Mini-Review

Are cuproproteins part of the multi-protein framework for making the Casparian strip?

ORCID Icon & ORCID Icon
Article: 1798605 | Received 13 Jul 2020, Accepted 16 Jul 2020, Published online: 30 Jul 2020

References

  • Petricka JJ, Winter CM, Benfey PN. Control of Arabidopsis root development. Annu Rev Plant Biol. 2012;63:1–4. doi:10.1146/annurev-arplant-042811-105501.
  • Doblas VG, Geldner N, Barberon M. The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol. 2017;39:136–143. doi:10.1016/j.pbi.2017.06.010.
  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA. 2012;109:10101–10106. doi:10.1073/pnas.1205726109.
  • Geldner N. The endodermis. Annu Rev Plant Biol. 2013;64:531–558. doi:10.1146/annurev-arplant-050312-120050.
  • Caspary MR. Bemerkungen über die Schutzscheide und die Bildung des Stammes und der Wurzel. Jahrbücher für wissenschaftliche Botanik. 1865;4:101–124.
  • Roppolo D, De Rybel B, Denervaud Tendon V, Pfister A, Alassimone J, Vermeer JE, Yamazaki M, Stierhof Y-D, Beeckman T, Geldner N, et al. A novel protein family mediates Casparian strip formation in the endodermis. Nature. 2011;473:380–383. doi:10.1038/nature10070.
  • Alassimone J, Naseer S, Geldner N. A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci USA. 2010;107:5214–5219. doi:10.1073/pnas.0910772107.
  • Roppolo D, Boeckmann B, Pfister A, Boutet E, Rubio MC, Dénervaud-Tendon V, Vermeer JEM, Gheyselinck J, Xenarios I, Geldner N, et al. Functional and evolutionary analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN family. Plant Physiol. 2014;165:1709–1722. doi:10.1104/pp.114.239137.
  • Wang Z, Yamaji N, Huang S, Zhang X, Shi M, Fu S, Yang G, Ma JF, Xia J. OsCASP1 is required for casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell. 2019;31:2636–2648. doi:10.1105/tpc.19.00296.
  • Wang Z, Shi M, Wei Q, Chen Z, Huang J, Xia J. OsCASP1 forms complexes with itself and OsCASP2 in rice. Plant Signal Behav. 2020;15:1706025. doi:10.1080/15592324.2019.1706025.
  • Li P, Yang M, Chang J, Wu J, Zhong F, Rahman A, Qin H, Wu S. Spatial expression and functional analysis of casparian strip regulatory genes in endodermis reveals the conserved mechanism in tomato. Front Plant Sci. 2018;9. doi:10.3389/fpls.2018.00832.
  • Alassimone J, Fujita S, Doblas VG, van Dop M, Barberon M, Kalmbach L, Vermeer JEM, Rojas-Murcia N, Santuari L, Hardtke CS, et al. Polarly localized kinase SGN1 is required for Casparian strip integrity and positioning. Nat Plants. 2016;2:16113. doi:10.1038/nplants.2016.113.
  • Lee Y, Rubio MC, Alassimone J, Geldner N. A mechanism for localized lignin deposition in the endodermis. Cell. 2013;153:402–412. doi:10.1016/j.cell.2013.02.045.
  • Rojas-Murcia N, Hématy K, Lee Y, Emonet A, Ursache R, Fujita S, De Bellis D, Geldner N. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. bioRxiv. 2020;2020.06.17.154617. doi:10.1101/2020.06.17.154617.
  • Pfister A, Barberon M, Alassimone J, Kalmbach L, Lee Y, Vermeer JE, Yamazaki M, Li G, Maurel C, Takano J, et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. Elife. 2014;3:e03115. doi:10.7554/eLife.03115.
  • Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science. 2017;355:284–286. doi:10.1126/science.aai9057.
  • Okuda S, Fujita S, Moretti A, Hohmann U, Doblas VG, Ma Y, Pfister A, Brandt B, Geldner N, Hothorn M, et al. Molecular mechanism for the recognition of sequence-divergent CIF peptides by the plant receptor kinases GSO1/SGN3 and GSO2. Proc Natl Acad Sci USA. 2020;117:2693–2703. doi:10.1073/pnas.1911553117.
  • Doblas VG, Smakowska-Luzan E, Fujita S, Alassimone J, Barberon M, Madalinski M, Belkhadir Y, Geldner N. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science. 2017;355:280–284. doi:10.1126/science.aaj1562.
  • Fujita S, De Bellis D, Edel KH, Köster P, Andersen TG, Schmid-Siegert E, Dénervaud Tendon V, Pfister A, Marhavý P, Ursache R, et al. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. Embo J. 2020;39:e103894. doi:10.15252/embj.2019103894.
  • Wang P, Calvo-Polanco M, Reyt G, Barberon M, Champeyroux C, Santoni V, Maurel C, Franke RB, Ljung K, Novak O, et al. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci Rep. 2019;9:4227. doi:10.1038/s41598-019-40588-5.
  • Drapek C, Sparks EE, Marhavy P, Taylor I, Andersen TG, Hennacy JH, Geldner N, Benfey PN. Minimum requirements for changing and maintaining endodermis cell identity in the Arabidopsis root. Nat Plants. 2018;4:586–595. doi:10.1038/s41477-018-0213-y.
  • Li P, Yu Q, Gu X, Xu C, Qi S, Wang H, Zhong F, Baskin TI, Rahman A, Wu S, et al. Construction of a functional casparian strip in non-endodermal lineages is orchestrated by two parallel signaling systems in Arabidopsis thaliana. Curr Biol. 2018;28:2777–86.e2. doi:10.1016/j.cub.2018.07.028.
  • Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA. 2013;110:14498–14503. doi:10.1073/pnas.1308412110.
  • Kamiya T, Borghi M, Wang P, Danku JM, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE, et al. The MYB36 transcription factor orchestrates Casparian strip formation. Proc Natl Acad Sci USA. 2015;112:10533–10538. doi:10.1073/pnas.1507691112.
  • Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN. MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proc Natl Acad Sci USA. 2015;112:12099–12104. doi:10.1073/pnas.1515576112.
  • Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JMC, Salt DE, Geldner N, et al. Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers. Curr Biol. 2017;27:758–765. doi:10.1016/j.cub.2017.01.030.
  • Kalmbach L, Hematy K, De Bellis D, Barberon M, Fujita S, Ursache R, Daraspe J, Geldner N. Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nat Plants. 2017;3:17058. doi:10.1038/nplants.2017.58.
  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–546. doi:10.1146/annurev.arplant.54.031902.134938.
  • Andersen TG, Molina D, Kilian J, Franke R, Ragni L, Geldner N. Tissue-autonomous phenylpropanoid production is essential for establishment of root barriers. bioRxiv. 2020:2020.06.18.159475. doi:10.1101/2020.06.18.159475.
  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie A, et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol. 2012;22:1207–1212. doi:10.1016/j.cub.2012.04.064.
  • Vermaas JV, Dixon RA, Chen F, Mansfield SD, Boerjan W, Ralph J, Crowley MF, Beckham GT. Passive membrane transport of lignin-related compounds. Proc Natl Acad Sci USA. 2019;116:23117–23123. doi:10.1073/pnas.1904643116.
  • Zhuang Y, Zuo D, Tao Y, Cai H, Li L. Laccase3-based extracellular domain provides possible positional information for directing Casparian strip formation in Arabidopsis. Proc Natl Acad Sci USA. 2020:202005429. doi:10.1073/pnas.2005429117.
  • Nersissian AM, Valentine JS, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG. Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci. 1998;7:1915–1929. doi:10.1002/pro.5560070907.
  • Reyt G, Chao Z, Flis P, Castrillo G, Chao D-Y, Salt DE. Uclacyanin proteins are required for lignified nanodomain formation within Casparian strips. bioRxiv. 2020:2020.05.01.071738. doi:10.1101/2020.05.01.071738.
  • Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau MT, Chu C, et al. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol. 2018;60:323–340. doi:10.1111/jipb.12634.
  • Pilon M. The copper microRNAs. New Phytol. 2017;213:1030–1035. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. Plant Cell 2009; 21:347–361. doi:10.1105/tpc.108.060137. doi:10.1111/nph.14244.
  • Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell. 2014;26:4933–4953. doi:10.1105/tpc.114.127340.
  • Martinka M, Dolan L, Pernas M, Abe J, Lux A. Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Ann Bot. 2012;110:361–371. doi:10.1093/aob/mcs110.
  • Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M. Copper homeostasis. New Phytol. 2009;182:799–816. doi:10.1111/j.1469-8137.2009.02846.x.
  • Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem. 2010;79:537–562. doi:10.1146/annurev-biochem-030409-143539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.