1,233
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

BES1 negatively regulates the expression of ACC oxidase 2 to control the endogenous level of ethylene in Arabidopsis thaliana

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 1850625 | Received 14 Sep 2020, Accepted 10 Nov 2020, Published online: 01 Dec 2020

References

  • Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000;16:1–6. doi:10.1146/annurev.cellbio.16.1.1.
  • Yin -C-C, Zhao H, Ma B, Chen S-Y, Zhang J-S. Diverse roles of ethylene in regulating agronomic traits in rice. Front Plant Sci. 2017;8:1676. doi:10.3389/fpls.2017.01676.
  • Dubois M, Van den Broeck L, Inzé D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018;23:311–323. doi:10.1016/j.tplants.2018.01.003.
  • Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol. 1984;35:155–189. doi:10.1146/annurev.pp.35.060184.001103.
  • Kende H. Ethylene biosynthesis. Annu Rev Plant Biol. 1993;44:283–307. doi:10.1146/annurev.pp.44.060193.001435.
  • Sato T, Theologis A. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Nat Acad Sci. 1989;86:6621–6625. doi:10.1073/pnas.86.17.6621.
  • Hamilton A, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Nat Acad Sci. 1991;88:7434–7437. doi:10.1073/pnas.88.16.7434.
  • Spanu P, Reinhardt D, Boller T. Analysis and cloning of the ethylene‐forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. Embo J. 1991;10:2007–2013.
  • Park CH, Roh J, Youn J-H, Son S-H, Park JH, Kim SY, Kim T-W, Kim S-K. Arabidopsis ACC oxidase 1 coordinated by multiple signals mediates ethylene biosynthesis and is involved in root development. Mol Cells. 2018;41:923.
  • Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci. 2014;5:640. doi:10.3389/fpls.2014.00640.
  • Wang KL-C, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14:S131–S51. doi:10.1105/tpc.001768.
  • Adams D, Yang S. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Nat Acad Sci. 1979;76:170–174. doi:10.1073/pnas.76.1.170.
  • Sasse JM. Physiological actions of brassinosteroids: an update. J Plant Growth Regul. 2003;22:276–288. doi:10.1007/s00344-003-0062-3.
  • Mandava NB. Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol. 1988;39:23–52. doi:10.1146/annurev.pp.39.060188.000323.
  • Clouse S, Zurek D. Molecular analysis of brassinolide action in plant growth and development. American Chemical Society; 1991
  • Zhu J-Y, Sae-Seaw J, Wang Z-Y. Brassinosteroid signalling. Development. 2013;140:1615–1620. doi:10.1242/dev.060590.
  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996;272:398–401. doi:10.1126/science.272.5260.398.
  • Mitchell J, Mandava N, Worley J, Plimmer J, Smith M. Brassins—a new family of plant hormones from rape pollen. Nature. 1970;225:1065–1066. doi:10.1038/2251065a0.
  • Domagalska MA, Sarnowska E, Nagy F, Davis SJ. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PloS One. 2010;5:e14012. doi:10.1371/journal.pone.0014012.
  • Joo S, Seo YS, Kim SM, Hong DK, Park KY, Kim WT. Brassinosteroid induction of AtACS4 encoding an auxin‐responsive 1‐aminocyclopropane‐1‐carboxylate synthase 4 in Arabidopsis seedlings. Physiol Plant. 2006;126:592–604.
  • Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126:467–475. doi:10.1016/j.cell.2006.05.050.
  • Arteca RN, Bachman JM. Light inhibition of brassinosteroid-induced ethylene production. J Plant Physiol. 1987;129:13–18. doi:10.1016/S0176-1617(87)80097-4.
  • Hansen M, Chae HS, Kieber JJ. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009;57:606–614. doi:10.1111/j.1365-313X.2008.03711.x.
  • Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet. 2018;14:e1007144. doi:10.1371/journal.pgen.1007144.
  • Park C-H, Seo C, Park YJ, Youn J-H, Roh J, Moon J, Kim S-K. BES1 directly binds to the promoter of the ACC oxidase 1 gene to regulate gravitropic response in the roots of Arabidopsis thaliana. Plant Signal Behav. 2020;15:1690724. doi:10.1080/15592324.2019.1690724.
  • Jiroutova P, Oklestkova J, Strnad M. Crosstalk between brassinosteroids and ethylene during plant growth and under abiotic stress conditions. Int J Mol Sci. 2018;19:3283. doi:10.3390/ijms19103283.
  • Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman CS, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using lepidium sativum and Arabidopsis thaliana. Plant Cell. 2009;21:3803–3822. doi:10.1105/tpc.109.070201.
  • Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 2012;31:253–270. doi:10.1007/s00299-011-1180-1.
  • Houben M, Van de Poel B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front Plant Sci. 2019;10:695. doi:10.3389/fpls.2019.00695.
  • Moon J, Park YJ, Son S-H, Roh J, Youn JH, Kim SY, Kim S-K. Brassinosteroids signaling via BZR1 down-regulates expression of ACC oxidase 4 to control growth of Arabidopsis thaliana seedlings. Plant Signal Behav. 2020;15:1734333.
  • Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J. 1987;6:3901–3907. doi:10.1002/j.1460-2075.1987.tb02730.x.
  • Saleh A, Alvarez-Venegas R, Avramova Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc. 2008;3:1018. doi:10.1038/nprot.2008.66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.