654
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Wide distribution of the Ustilago maydis-bacterium endosymbiosis in naturally infected maize plants

, , , , ORCID Icon & ORCID Icon
Article: 1855016 | Received 27 Aug 2020, Accepted 19 Nov 2020, Published online: 23 Dec 2020

References

  • Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE, Cullen D. Isolation of endohyphal bacteria from foliar ascomycota and in vitro establishment of their symbiotic associations. Appl Environ Microbiol. 2016;82:1–6. doi:10.1128/AEM.00452-16.
  • Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P. Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol. 2005;7(11):1786–1795. doi:10.1111/j.1462-2920.2005.00867.x.
  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol. 1996;62(8):3005–3010. doi:10.1128/AEM.62.8.3005-3010.1996.
  • Desirò A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S, Faccio A, Kaech A, Pawlowska TE, Bonfante P. Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. Isme J. 2014;8:257–270. doi:10.1038/ismej.2013.151.
  • Fitzpatrick EE First bacterial endosymbionts found in the phylum Ascomycota. Dissertations and Theses. 2013; paper 675.
  • Partida-Martínez LP, Monajembashi S, Greulich KO, Hertweck C. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Bio. 2007;17:773–777. doi:10.1016/j.cub.2007.03.039.
  • Sato Y, Narisawa K, Tsuruta K, Umezu M, Nishizawa T, Tanaka K, Yamaguchi K, Komatsuzaki M, Ohta H. Detection of betaproteobacteria inside the mycelium of the fungus Mortierella elongate. Microbes Environ. 2010;25:321–324. doi:10.1264/jsme2.ME10134.
  • Schüßmer A, Mollenhauer D, Schnepf E, Kluge M. Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal [AM] fungi. Bot Acta. 1994;107:36–45. doi:10.1111/j.1438-8677.1994.tb00406.x.
  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A, Imani J, Kämpfer P, Domann E, Schäfer P, Hartmann A, et al. Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol. 2008;10:2235–2246. doi:10.1111/j.1462-5822.2008.01202.x.
  • Bonfante P, Desirò A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. Isme J. 2017;11:1727–1735.
  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–352.
  • Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P. Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol. 2004;70(6):3600–3608. doi:10.1128/AEM.70.6.3600-3608.2004.
  • Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE, Corradi N. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE. 2013;8:1–8. doi:10.1371/journal.pone.0073132.
  • Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, et al. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol. 2017;19(8):2964–2983. doi:10.1111/1462-2920.13669.
  • Lackner G, Möbius N, Scherlach K, Partida-Martinez LP, Winkler R, Schmitt I, Hertweck C. Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus symbiosis. MBio. 2009;75:2982–2986.
  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S. Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. MBio. 2000;66:4503–4509.
  • Desirò A, Faccio A, Kaech A, Bidartondo MI, Bonfante P. Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria. New Phytol. 2015;205:1464–1472. doi:10.1111/nph.13136.
  • Mondo SJ, Toomer KH, Morton JB, Lekberg Y, Pawlowska TE. Evolutionary stability in a 400-million-year-old heritable facultative mutualism. Evolution. 2012;66(8):2564–2576. doi:10.1111/j.1558-5646.2012.01611.x.
  • Bölker M, Urban M, Kahmann R. The a mating type locus of U. maydis specifies cell signaling components. Cell. 1992;68:441–450. doi:10.1016/0092-8674(92)90182-C.
  • Müller P, Weinzierl G, Brachmann A, Feldbrügge M, Kahmann R. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell. 2003;2:1187–1199. doi:10.1128/EC.2.6.1187-1199.2003.
  • Banuett F, Different HI. a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA. 1989;86:5878–5882. doi:10.1073/pnas.86.15.5878.
  • Banuett F, Herskowitz I. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development. 1996;122:2965–2976.
  • Cabrera-Ponce JL, León-Ramírez CG, Verver-Vargas A, Palma-Tirado L, Ruiz- Herrera J. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps. Fungal Genet Biol. 2012;49:765–771. doi:10.1016/j.fgb.2012.07.005.
  • Ruiz-Herrera J, León-Ramírez CG, Guevara-Olvera L, Cárabez-Trejo A. Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology. 1995;141:695–703. doi:10.1099/13500872-141-3-695.
  • Feldbrügge M, Bölker M, Steinberg G, Kämper J, Kahmann R. Regulatory and structural networks orchestrating mating, dimorphism, cell shape, and pathogenesis in Ustilago maydis. In: Kües U, Fischer R, editors. The mycota i growth, differentiation and sexuality. Heidelberg, GermanyBerlin: Heidelberg Springer-Verlag; 2006. p. 375–391.
  • Heimel K, Scherer M, Schuler D, The KJ. Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell. 2010;22:2908–2922. doi:10.1105/tpc.110.076265.
  • Banuett F. History of the mating types in Ustilago maydis. In: Heitman J, JW K, JW T, LA C, editors. Sex in fungi: molecular determination and evolutionary implications. Washington DC, USA; ASM Press: 2007. p. 351–375.
  • Ruiz-Herrera J, León-Ramírez C, Vera-Núñez A, Sánchez‐Arreguín A, Ruiz‐Medrano R, Salgado‐Lugo H, Sánchez‐Segura L, Peña‐Cabriales JJ. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol. 2015;207:769–777. doi:10.1111/nph.13359.
  • Li W, Lee SY, Cho YJ, Ghim SY, Jung HY. Mediation of induced systemic resistance by the plant growth-promoting rhizobacteria Bacillus pumilus S2-3-2. Mol Biol Rep. 2020 Oct 10;47:8429–8438. PMID: 33037963. doi:10.1007/s11033-020-05883-9.
  • Masood S, Zhao XQ, Shen RF. Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Sci Hortic (Amsterdam). 2020;272:109581. doi:10.1016/j.scienta.2020.109581.
  • Holliday R. The genetics of Ustilago maydis. Genet Res. 1961;2(2):204–230. doi:10.1017/S0016672300000719.
  • Kronstad JW, Leong SA. Isolation of two alleles of the b locus of Ustilago maydis. Proc Natl Acad Sci USA. 1989;86:978–982. doi:10.1073/pnas.86.3.978.
  • Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006;444:97–101. doi:10.1038/nature05248.
  • Burris RH. Methodology. In: Quispel A, editor. Biology of nitrogen fixation. Amsterdam, Netherlands: North-Holland Publishing Co Amsterdam; 1974. p. 3–42.
  • Cavalcante VA, Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil. 1988;108:23–31. doi:10.1007/BF02370096.
  • Estrada-de Los Santos P, Bustillos-Cristales Y, Caballero-Mellado J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol. 2001;67:2790–2798. doi:10.1128/AEM.67.6.2790-2798.2001.
  • Tsukuda T, Carleton S, Fotheringham S, Holloman WK. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol Cell Biol. 1988;8:3703–3709. doi:10.1128/MCB.8.9.3703.
  • Bracker CE, Ruiz-Herrera J, Bartnicki-Garcia S. Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci USA. 1976;73(12):4570–4574. doi:10.1073/pnas.73.12.4570.
  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181–184.
  • Palacios R, Brom S, Davila G, Flores M, Girard ML, Romero D, Stepkowski T. Gene amplification in Rhizobium. In: Palacios R, Mora J, Newton WE, editors. New horizons in nitrogen fixation. Dordrecht, The Netherlands; Kluwer Academic Publishers: 1993. p. 581–585.
  • FJ B. Biological nitrogen fixation. In: Lugtenberg B editor. Principles of plant-microbe interactions. Hoboken, New Jersey, USA: Springer, Cham; 2015. p. 215–224.
  • Gomez NC, Kosheleva IA, Abraham WR, Smalla K. Effect of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on soil bacterial community. FEMS Microbiol Ecol. 2005;54:21–33. doi:10.1016/j.femsec.2005.02.005.
  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EM. Analysis of actinomycete communities by specific amplification of genes encoding 16sRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol. 1997;63:3233–3241. doi:10.1128/AEM.63.8.3233-3241.1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.