859
Views
6
CrossRef citations to date
0
Altmetric
Short Communication

Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: biphasic kinetics and stomatal regulation

, & ORCID Icon
Article: 1917169 | Received 25 Mar 2021, Accepted 12 Apr 2021, Published online: 21 Apr 2021

References

  • Ali MS, Baek KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci. 2020;21:1. doi:10.3390/ijms21020621.
  • Jang G, Yoon Y, Choi YD. Crosstalk with jasmonic acid integrates multiple responses in plant development. Int J Mol Sci. 2020;21:305. doi:10.3390/ijms21010305.
  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci. 2019;10:1349. doi:10.3389/fpls.2019.01349.
  • Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci. 2008;13:264–6. doi:10.1016/j.tplants.2008.03.005.
  • Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. J Plant Physiol. 2019;242:153032. doi:10.1016/j.jplph.2019.153032.
  • Tamogami S, Rakwal R, Agrawal GK. Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem Bioph Res Co. 2008;376:723–727. doi:10.1016/j.bbrc.2008.09.069.
  • Copolovici L, Kännaste A, Remmel T, Niinemets Ü. Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot. 2014;100:55–63. doi:10.1016/j.envexpbot.2013.12.011.
  • Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets Ü. Volatile emissions from Alnus glutinosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol. 2011;37:18–28. doi:10.1007/s10886-010-9897-9.
  • Frost CJ, Mescher MC, Dervinis C, et al. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol. 2008;180:722–734. doi:10.1111/j.1469-8137.2008.02599.x.
  • Mäntylä E, Blande JD, Klemola T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature? Arthropod-Plant Inte. 2014;8:143–153. doi:10.1007/s11829-014-9296-1.
  • Semiz G, Blande JD, Heijari J, Işık K, Niinemets Ü, Holopainen JK. Manipulation of VOC emissions with methyl jasmonate and carrageenan in the evergreen conifer Pinus sylvestris and evergreen broadleaf Quercus ilex. Plant Biology. 2012;14:57–65. doi:10.1111/j.1438-8677.2011.00485.x.
  • Niinemets Ü, Kännaste A, Copolovici L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci. 2013;4:262. doi:10.3389/fpls.2013.00262.
  • Yamashita F, Rodrigues AL, Rodrigues TM, - Palermo FH, Baluška F, de Almeida LFR. Potential plant-plant communication induced by infochemical methyl Jasmonate in Sorghum (Sorghum bicolor). Plants. 2021;10:485. doi:10.3390/plants10030485.
  • Copolovici L, Niinemets Ü. Environmental impacts on plant volatile emission. In: Blande J, Glinwood R, editors. Deciphering chemical language of plant communication. Berlin, Germany: Springer International Publishing; 2016. p. 35–59.
  • Shi J, Ma C, Qi D, Lv H, Yang T, Peng Q, Chen Z, Lin Z. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biol. 2015;15:233. doi:10.1186/s12870-015-0609-z.
  • Suh HW, Hyun SH, Kim SH, Lee S-Y, Choi H-K. Metabolic profiling and enhanced production of phytosterols by elicitation with methyl jasmonate and silver nitrate in whole plant cultures of Lemna paucicostata. Process Biochem. 2013;48:1581–1586. doi:10.1016/j.procbio.2013.06.032.
  • Jiang YF, Ye JY, Li S, Niinemets Ü. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber (Cucumis sativus): a high-resolution analysis of dose dependence. J Exp Bot. 2017;68(16):4679–4694. doi:10.1093/jxb/erx244.
  • Wang P, Song CP. Guard cell signaling for hydrogen peroxide and abscisic acid. New Phytol. 2008;178:703–718. doi:10.1111/j.1469-8137.2008.02431.x.
  • Casson S, Gray JE. Influence of environmental factors on stomatal development. New Phytol. 2008;178:9–23. doi:10.1111/j.1469-8137.2007.02351.x.
  • Loreto F, Barta C, Brilli F, Nogues I. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 2006;29(9):1820–1828. doi:10.1111/j.1365-3040.2006.01561.x.
  • Li S, Harley PC, Niinemets Ü. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant Cell and Environ. 2017;40:1984–2003. doi:10.1111/pce.13003.
  • Micheli F. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001;6:414–419. doi:10.1016/S1360-1385(01)02045-3.
  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, NiinemetsÜ, Schurr U, Wildt J. Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ. 2005;28:1334–1343. doi:10.1111/j.1365-3040.2005.01383.x.
  • Niinemets Ü, Loreto F, Reichstein M. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 2004;9:180–186. doi:10.1016/j.tplants.2004.02.006.
  • Niinemets Ü, Reichstein M, Staudt M. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol. 2002;130:1371–1385. doi:10.1104/pp.009670.
  • Widhalm JR, Jaini R, Morgan JA, Dudareva N. Rethinking how volatiles are released from plant cells. Trends Plant Sci. 2015;20(9):545–550. doi:10.1016/j.tplants.2015.06.009.
  • Irving HR, Gehring CA, Parish RW. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA. 1992;89:1790–1794. doi:10.1073/pnas.89.5.1790.
  • Gehring CA, Irving HR, McConchie R. Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Ann Bot. 1997;80:485–489. doi:10.1006/anbo.1997.0471.
  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 2004;134(4):1536–1545. doi:10.1104/pp.103.032250.
  • Munemasa S, Oda K, Watanabe-Sugimoto M. The coronatine-insensitive mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells: specific impairment of ion channel activation and second messenger production. Plant Physiol. 2007;143:1398–1407. doi:10.1104/pp.106.091298.
  • Akter N, Okuma E, Sobahan MA, Uraji M, Munemasa S, Nakamura Y, Mori IC, Murata Y. Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis. J Plant Growth Regul. 2013;32(1):208–215. doi:10.1007/s00344-012-9291-7.
  • Shahzad R, Waqas M, Khan AL, Hamayun M, Kang S-M, Lee I-J. Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiol Biochem. 2015;96:406–416. doi:10.1016/j.plaphy.2015.08.020.
  • Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y. Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant Cell Physiol. 2010;51(10):1721–1730. doi:10.1093/pcp/pcq131.
  • Islam MM, Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y. Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol. 2010;51(2):302–311. doi:10.1093/pcp/pcq001.
  • Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 2011;156(1):430–438. doi:10.1104/pp.111.172254.
  • Yan S, McLamore ES, Dong S. The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. Plant J. 2015;83:638–649. doi:10.1111/tpj.12915.
  • Jung S. Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. J Plant Physiol. Biochem 2004;42:231–255.
  • Attaran E, Major I, Cruz J, Rosa BA, Koo AJK, Chen J, Kramer DM, He SY, Howe GA. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol. 2014;165(3):1302–1314. doi:10.1104/pp.114.239004.
  • Rodriguez-Saona C, Polashock J, Malo E. Jasmonate-mediated induced volatiles in the American cranberry, Vaccinium macrocarpon: from gene expression to organismal interactions. Front Plant Sci. 2013;4:1–17. doi:10.3389/fpls.2013.00115.
  • Kanagendran A, Pazouki L, Li S, Liu B, Kännaste A, Niinemets Ü. Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum ‘Wisconsin’. J Exp Bot. 2017;69:681–697. doi:10.1093/jxb/erx431.
  • Jiang Y, Ye J, Rasulov B. Role of stomatal conductance in modifying the dose-response of stress volatile emissions in methyl jasmonate treated leaves of cucumber (Cucumis sativa). Int J Mol Sci. 2020;21:1018. doi:10.3390/ijms21031018.
  • Garrido I, Espinosa F, Córdoba-Pedregosa MC. Redox-related peroxidative responses evoked by methyl-jasmonate in axenically cultured aeroponic sunflower (Helianthus annuus L.) seedling roots. Protoplasma. 2003;221:79–91. doi:10.1007/s00709-002-0073-0.
  • Zhao N, Lin H, Lan S, Jia Q, Chen X, Guo H, Chen F. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for Methyl Jasmonate Esterase and has a role in stress response. Plant Physiol Bioch. 2016;102:125–132. doi:10.1016/j.plaphy.2016.02.027.
  • Hazra S, Bhattacharyya D, Chattopadhyay S. Methyl jasmonate regulates podophyllotoxin accumulation in Podophyllum hexandrum by altering the ROS-responsive podophyllotoxin pathway gene expression additionally through the down regulation of few interfering miRNAs. Front Plant Sci. 2017;9:164.
  • Küpper FC, Gaquerel E, Cosse A, Adas F, Peters AF, Müller DG, Kloareg B, Salaün J-P, Potin P. Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol. 2009;50(4):789–800. doi:10.1093/pcp/pcp023.
  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007;448(7154):666–670. doi:10.1038/nature06006.
  • Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot. 2017;68:1303–1321. doi:10.1093/jxb/erw443.
  • Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot. 2017;68:1371–1385. doi:10.1093/jxb/erw478.
  • Byun-mckay A, Godard KA, Toudefallah M, Martin DM, Alfaro R, King J, Bohlmann J, Plant AL. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol. 2006;140:1009–1021. doi:10.1104/pp.105.071803.
  • Martin D, Tholl D, Gershenzon J, Bohlmann J. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 2002;129(3):1003–1018. doi:10.1104/pp.011001.
  • Bell E, Mullet JE. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol Gen Genet. 1991;230:456–462. doi:10.1007/BF00280303.
  • Wasternack C, Parthier B. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2007;2:302–307. doi:10.1016/S1360-1385(97)89952-9.
  • Yang XY, Jiang WJ, Yu HJ. The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci. 2012;13:2481–2500. doi:10.3390/ijms13022481.
  • Kunert M, Biedermann A, Koch T, Boland W. Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Sep Sci. 2002;25(10–11):677–684. doi:10.1002/1615-9314(20020701)25:10/11<677::AID-JSSC677>3.0.CO;2-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.