707
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Plant’s electrophysiological information manifests the composition and nutrient transport characteristics of membrane proteins

, , , , &
Article: 1918867 | Received 02 Apr 2021, Accepted 14 Apr 2021, Published online: 25 Apr 2021

References

  • Fromm J, Lautner S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2010;30(3):1–10. doi:10.1111/j.1365-3040.2006.01614.x.
  • Volkov AG. 2006. Plant electrophysiology: theory and methods. Springer.
  • Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol. 2017;8:684. doi:10.3389/fphys.2017.00684.
  • Sukhov V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res. 2016;130(1–3):373–387. doi:10.1007/s11120-016-0270-x.
  • Sukhov V, Sukhova E, Vodeneev V. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog Biophys Mol Bio. 2019;146:63–84. doi:10.1016/j.pbiomolbio.2018.11.009.
  • Sukhov V, Vodeneev V. A mathematical model of action potential in cells of vascular plants. J Membrane Biol. 2009;232(1–3):59–67. doi:10.1007/s00232-009-9218-9.
  • Sukhov V, Nerush V, Orlova L, Vodeneev V. Simulation of action potential propagation in plants. J Theor Biol. 2011;291:47–55. doi:10.1016/j.jtbi.2011.09.019.
  • Sukhov V, Akinchits E, Katicheva L, Vodeneev V. Simulation of variation potential in higher plant cells. J Membrane Biol. 2013;246(4):287–296. doi:10.1007/s00232-013-9529-8.
  • Sukhov V, Surova L, Sherstneva O, Vodeneev V. Influence of variation potential on resistance of the photosynthetic machinery to heating in pea. Physiol Plantarum. 2014;152(4):773–783. doi:10.1111/ppl.12208.
  • Sukhov V, Surova L, Sherstneva O, Bushueva A, Vodeneev V. Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct Plant Biol. 2015;42(8):727–736. doi:10.1071/FP15052.
  • Surova L, Sherstneva O, Vodeneev V, Sukhov V. Variation potential propagation decreases heat-related damage of pea photosystem I by 2 different pathways. Plant Signal Behav. 2016;11(3):E1145334. doi:10.1080/15592324.2016.1145334.
  • Sukhov V, Gaspirovich V, Mysyagin S, Vodeneev V. High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of pea. Funct Front Physiol. 2017;8:763. doi:10.3389/fphys.2017.00763.
  • Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S. Rapid, long-distance electrical and calcium signaling in plants. Annu Rev Plant Biol. 2016;67(1):287–307. doi:10.1146/annurev-arplant-043015-112130.
  • Favre P, Greppin H, Agosti RD. Accession-dependent action potentials in Arabidopsis. J Plant Physiol. 2011;168(7):653–660. doi:10.1016/j.jplph.2010.09.014.
  • Gil PM, Gurovich L, Schaffer B, Alcayaga J, Rey S, Iturriaga R. Root to leaf electrical signaling in avocado in response to light and soil water content. J Plant Physiol. 2008;165(10):1070–1078. doi:10.1016/j.jplph.2007.07.014.
  • Hedrich R, Salvador-Recatala V, Dreyer I. Electrical wiring and long-distance plant communication. Trends Plant Sci. 2016;21(5):376–387. doi:10.1016/j.tplants.2016.01.016.
  • Nguyen CT, Kurenda A, Stolz S, Chetelat A, Farmer EE. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A. 2018;115(40):10178–10183. doi:10.1073/pnas.1807049115.
  • Yan X, Wang Z, Huang L, Wang C, Hou R, Xu Z, Qiao X. Research progress on electrical signals in higher plants. Progr Nat Sci Mater Int. 2009;19(5):531–541. doi:10.1016/j.pnsc.2008.08.009.
  • Gallé A, Lautner S, Flexas J, Fromm J. Environmental stimuli and physiological responses: the current view on electrical signaling. Environ Exp Bot. 2015;114:15–21. doi:10.1016/j.envexpbot.2014.06.013.
  • Macedo FCO, Dziubinska H, Trebacz ORF, Moral RA. Action potentials in abscisic acid-deficient tomato mutant generated spontaneously and evoked by electrical stimulation. Acta Physiol Plant. 2015;37.
  • Wang ZY, Qin XH, Li JH, Fan LF, Zhou Q, Wang YQ, Zhao X, Xie CJ, Wang ZY, Huang L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants. Environ Exp Bot. 2019;160:120–130. doi:10.1016/j.envexpbot.2019.01.014.
  • Xing DK, Chen L, Wu YY, Zwiazek JJ. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci Hortic. 2021;276:109763. doi:10.1016/j.scienta.2020.109763.
  • Zhang C, Su Y WYY, Dk X, Dai Y, Wu YS, Fang L. A plant’s electrical parameters indicate its physiological state: a study of intracellular water metabolism. Plants. 2020;9(10):1256. doi:10.3390/plants9101256.
  • Harker FR, Dunlop J. Electrical impedance studies of nectarines during coolstorage and fruit ripening. Postharvest Biol Tec. 1994;4(1–2):125–134. doi:10.1016/0925-5214(94)90014-0.
  • Ibba P, Falco A, Abera BD, Cantarella G, Petti L, Lugli P. Bio-impedance and circuit parameters: an analysis for tracking fruit ripening. Postharvest Biol Tec. 2020;159:110978. doi:10.1016/j.postharvbio.2019.110978.
  • Javed Q, Wu YY, Xing DK, Azeem A, Ullah I, Zaman M. Re-watering: an effective measure to recover growth and photosynthetic characteristics in salt-stressed Brassica napus L. Chil J Agr Res. 2017;77(1):78–86. doi:10.4067/S0718-58392017000100010.
  • Á K, Hlaváčová Z, Vozáry E, Staroňová L. Relationship between moisture content and electrical impedance of carrot slices during drying. Int Agrophys. 2015;29(1):61–66. doi:10.1515/intag-2015-0013.
  • Xing DK, Xu XJ, Wu YY, Liu YJ, Wu YS, Ni JH, Azeem A. Leaf tensity: a method for rapid determination of water requirement information in Brassica napus L. J Plant Interact. 2018;13(1):380–387. doi:10.1080/17429145.2018.1478006.
  • Zhang MM, Wu YY, Xing DK, Zhao K, Yu R. Rapid measurement of drought resistance in plants based on electrophysiological properties. Transactions of the ASABE. 2015;58:1441–1446.
  • Xing DK, Chen XL, Wu YY, Xu XJ, Chen Q, Li L, Zhang C. Rapid prediction of the re-watering time point of Orychophragmus violaceus L. based on the online monitoring of electrophysiological indexes. Sci Hortic. 2019;256:108642. doi:10.1016/j.scienta.2019.108642.
  • Chen Y, Zhao DJ, Wang ZY, Wang ZY, Tang G, Huang L. Plant electrical signal classification based on waveform similarity. Algorithms. 2016;9(4):1–23. doi:10.3390/a9040070.
  • Zhao DJ, Wang ZY, Li J, Wen X, Liu A, Wang XD, Hou RF, Wang C, Huang L. Recording extracellular signals in plants: a modeling and experimental study. Math Comput Model. 2013;58(3–4):556–563. doi:10.1016/j.mcm.2011.10.065.
  • Guo WC, Liu DX, Zhou CC, Han WT. Non-destructive moisture detector for plant leaves based on capacitance. Trans Chin Soc Agric Mach. 2014;45(10):287–293. in Chinese
  • Hopkins WG, Huner NPA. Introduction to plant physiology. 3rd ed. US, New York: John Wiley & Sons Inc; 2004. p. 27.New York: John Wiley & Sons Inc; 2004. p. 27.
  • Buckley DJ, Lefebvre M, Meijer EGM, Brown DCW. A signal generator for electrofusion of plant protoplasts. Comput Electron Agr. 1990;5(2):179–185. doi:10.1016/0168-1699(90)90032-K.
  • Philip N. Biological physics: energy, information life. New York, USA: Freeman and Company; 2003. 413–448.
  • Zhang AM, Wang R, Xie H, Xie XH, Shi YQ, Jia ZP, Sun K. Summarization on the methodology study of protein detection. Letters in Biotechnology. 2011;22(1):130–134. in Chinese
  • Li L, Wang Q, Feng J, Tong LL, Tang B. Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets. Anal Chem. 2014;86(10):5101–5107. doi:10.1021/ac500881p.
  • Borges BMMN, Strauss M, Camelo PA, Sohi SP, Franco HCJ. Re-use of sugarcane residue as a novel biochar fertiliser – increased phosphorus use efficiency and plant yield. J Clean Prod. 2020;262:121406. doi:10.1016/j.jclepro.2020.121406.
  • Geng YJ, Chen L, Yang C, Jiao DY, Zhang YH, Cai ZQ. Dry-season deficit irrigation increases agricultural water use efficiency at the expense of yield and agronomic nutrient use efficiency of Sacha Inchi plants in a tropical humid monsoon area. Ind Crops Prod. 2017;109:570–578. doi:10.1016/j.indcrop.2017.09.022.
  • Rayees B, Dorcus M, Chitra S. Nutritional composition and oil fatty acids of Indian winter melon Benincasa hispida (Thunb.) seeds. Int Food Res J. 2013;20:1151–1155.
  • Glenn M, Thompson RG, Piene H. Stem electrical capacitance and resistance measurements as related to total foliar biomass fir trees. Can J For Res. 1987;17(9):1071–1074. doi:10.1139/x87-164.
  • Wu YY, Xing DK, Hang HT, Zhao K. Principles and technology of determination on plant’ adaptation to Karst environment. Beijing: Science Press; 2019. 191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.