2,268
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide identification and expression pattern analysis of the TCP transcription factor family in Ginkgo biloba

, , , , , , & show all
Article: 1994248 | Received 17 Sep 2021, Accepted 12 Oct 2021, Published online: 23 Jan 2022

References

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 2003;33(3):513–13. doi:10.1046/j.1365-313x.2003.01648.x.
  • Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol. 2018;176(2):1694–1708. doi:10.1104/pp.17.00823.
  • Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell. 2010;22(4):1161–1173. doi:10.1105/tpc.109.069203.
  • Ding S, Cai Z, Du H, Wang H. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for in drought tolerance. Int J Mol Sci. 2019;20(11):2762. doi:10.3390/ijms20112762.
  • Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Van Aken O, Millar AH, Murcha M, Whelan J. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell. 2010;22(12):3921–3934. doi:10.1105/tpc.110.074518.
  • Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386(6624):485–488. doi:10.1038/386485a0.
  • Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. Control of organ asymmetry in flowers of antirrhinum. Cell. 1999;99(4):367–376. doi:10.1016/s0092-8674(00)81523-8.
  • Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J. 2002;30(3):337–348. doi:10.1046/j.1365-313x.2002.01294.x.
  • Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010;15(1):31–39. doi:10.1016/j.tplants.2009.11.003.
  • Chai W, Jiang P, Huang G, Jiang H, Li X. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize. Physiol Mol Biol Plants. 2017;23(4):779–791. doi:10.1007/s12298-017-0476-1.
  • Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell. 1997;9(9):1607–1619. doi:10.1105/tpc.9.9.1607.
  • Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P. Evolution and diversification of the CYC/TB1 gene family in asteraceae–a comparative study in gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol. 2012;29(4):1155–1166. doi:10.1093/molbev/msr283.
  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011;43(11):1160–1163. doi:10.1038/ng.942.
  • Nath U, Crawford BCW, Carpenter R, Coen E. Genetic control of surface curvature. Science. 2003;299(5611):1404–1407. doi:10.1126/science.1079354.
  • Crawford BCW, Nath U, Carpenter R, Coen ES. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of antirrhinum. Plant Physiol. 2004;135(1):244–253. doi:10.1104/pp.103.036368.
  • Jiu S, Xu Y, Wang J, Wang L, Wang S, Ma C, Guan L, Abdullah M, Zhao M, Xu W, et al. Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera. Front Genet. 2019;10:1276. doi:10.3389/fgene.2019.01276.
  • Bao S, Zhang Z, Lian Q, Sun Q, Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genet. 2019;20(1):91. doi:10.1186/s12863-019-0793-1.
  • Feng Z-J, Xu S-C, Liu N, Zhang G-W, Hu Q-Z, Gong Y-M. Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness. Plant Physiol Biochem. 2018;127:129–142. doi:10.1016/j.plaphy.2018.03.020.
  • Francis A, Dhaka N, Bakshi M, Jung K-H, Sharma MK, Sharma R. Comparative phylogenomic analysis provides insights into TCP gene functions in sorghum. Sci Rep. 2016;6(1):38488. doi:10.1038/srep38488.
  • Zhang G, Zhao H, Zhang C, Li X, Lyu Y, Qi D, Cui Y, Hu L, Wang Z, Liang Z, et al. TCP7 functions redundantly with several Class I TCPs and regulates endoreplication in Arabidopsis. J Integr Plant Biol. 2019;61(11):1151–1170. doi:10.1111/jipb.12749.
  • Wang X, Xu X, Mo X, Zhong L, Zhang J, Mo B, Kuai B. Overexpression of TCP8 delays Arabidopsis flowering through a FLOWERING LOCUS C-dependent pathway. BMC Plant Biol. 2019;19(1):534. doi:10.1186/s12870-019-2157-4.
  • Vadde BVL, Challa KR, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. Plant J. 2018;93(2):259–269. doi:10.1111/tpj.13772.
  • Yu H, Zhang L, Wang W, Tian P, Wang W, Wang K, Gao Z, Liu S, Zhang Y, Irish VF, et al. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. J Exp Bot. 2021;72(5):1809–1821. doi:10.1093/jxb/eraa569.
  • Chakraborty A, Viswanath A, Malipatil R, Rathore A, Thirunavukkarasu N. Structural and functional characteristics of mirnas in five strategic millet species and their utility in drought tolerance. Front Genet. 2020;11:608421. doi:10.3389/fgene.2020.608421.
  • Giacomelli JI, Weigel D, Chan RL, Manavella PA. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol. 2012;195(4):766–773. doi:10.1111/j.1469-8137.2012.04259.x.
  • Lopez JA, Sun Y, Blair PB, Mukhtar MS. TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci. 2015;20(4):238–245. doi:10.1016/j.tplants.2015.01.005.
  • Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell. 2010;22(11):3574–3588. doi:10.1105/tpc.110.075598.
  • Yang W, Choi M-H, Noh B, Noh Y-S. De novo shoot regeneration controlled by HEN1 and TCP3/4 in Arabidopsis. Plant Cell Physiol. 2020;61(9):1600–1613. doi:10.1093/pcp/pcaa083.
  • Li Z, An X, Zhu T, Yan T, Wu S, Tian Y, Li J, Wan X. Discovering and constructing ceRNA-miRNA-Target gene regulatory networks during anther development in maize. Int J Mol Sci. 2019;20(14):3480. doi:10.3390/ijms20143480.
  • Yu Y, Jia T, The CX. ‘how’ and ‘where’ of plant microRNAs. New Phytol. 2017;216(4):1002–1017. doi:10.1111/nph.14834.
  • Karabin M, Hudcova T, Jelinek L, Dostalek P. Biotransformations and biological activities of hop flavonoids. Biotechnol Adv. 2015;33(6):1063–1090. doi:10.1016/j.biotechadv.2015.02.009.
  • Bouaziz M, Grayer RJ, Simmonds MSJ, Damak M, Sayadi S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia. J Agric Food Chem. 2005;53(2):236–241. doi:10.1021/jf048859d.
  • Mahmoud AM, Hernández Bautista RJ, Sandhu MA, Hussein OE. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid Med Cell Longev. 2019;2019:5484138. doi:10.1155/2019/5484138.
  • Ye J, Cheng S, Zhou X, Chen Z, Kim SU, Tan J, Zheng J, Xu F, Zhang W, Liao Y, et al. A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis. Ind Crops Prod. 2019;139:111547. doi:10.1016/j.indcrop.2019.111547.
  • Dong N-Q, Lin H-X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol. 2021;63(1):180–209. doi:10.1111/jipb.13054.
  • Shih CH, Chu H, Tang LK, Sakamoto W, Maekawa M, Chu IK, Wang M, Lo C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta. 2008;228(6):1043–1054. doi:10.1007/s00425-008-0806-1.
  • Wang X-C, Wu J, Guan M-L, Zhao C-H, Geng P, Arabidopsis ZQ. MYB4 plays dual roles in flavonoid biosynthesis. Plant J. 2020;101(3):637–652. doi:10.1111/tpj.14570.
  • Viola IL, Camoirano A, Gonzalez DH. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis. Plant Physiol. 2016;170(1):74–85. doi:10.1104/pp.15.01016.
  • Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J. 2013;76(6):901–913. doi:10.1111/tpj.12348.
  • Yu S, Li P, Zhao X, Tan M, Ahmad MZ, Xu Y, Tadege M, Zhao J. CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis). Hortic Res. 2021;8(1):104. doi:10.1038/s41438-021-00538-7.
  • Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, et al. Draft genome of the living fossil Ginkgo biloba. Gigascience. 2016;5(1):49. doi:10.1186/s13742-016-0154-1.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server issue):W585–W587. doi:10.1093/nar/gkm259.
  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–1297. doi:10.1093/bioinformatics/btu817.
  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–327. doi:10.1093/nar/30.1.325.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425. doi:10.1093/oxfordjournals.molbev.a040454.
  • Ye J, Zhang X, Tan J, Xu F, Cheng S, Chen Z, Zhang W, Liao Y. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis. Ind Crops Prod. 2020;148:112289. doi:10.1016/j.indcrop.2020.112289.
  • Zhou X, Liao Y, Kim S-U, Chen Z, Nie G, Cheng S, Ye J, Xu F. Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba. Sci Rep. 2020;10(1):13723. doi:10.1038/s41598-020-69305-3.
  • Zhang L, Xu D, Huang Y, Zhu X, Rui M, Wan T, Zheng X, Shen Y, Chen X, Ma K, et al. Structural and functional characterization of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease. Sci Rep. 2017;7(1):42542. doi:10.1038/srep42542.
  • Meng X, Xu F, Song Q, Ye J, Liao Y, Zhang W. Isolation, characterization and functional analysis of a novel 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene (GbHMGS2) from Ginkgo biloba. Acta Physiol Plant. 2018;40(4):72. doi:10.1007/s11738-018-2650-7.
  • Jansson S, Meyer-Gauen G, Cerff R, Martin W. Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol. 1994;39(1):34–46. doi:10.1007/BF00178247.
  • Ye J, Mao D, Cheng S, Zhang X, Tan J, Zheng J, Xu F. Comparative transcriptome analysis reveals the potential stimulatory mechanism of terpene trilactone biosynthesis by exogenous salicylic acid in Ginkgo biloba. Ind Crops Prod. 2020;145:112104. doi:10.1016/j.indcrop.2020.112104.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi:10.1038/nprot.2008.73.
  • Liu -M-M, Wang -M-M, Yang J, Wen J, Guo P-C, Wu Y-W, Ke Y-Z, Li P-F, Li J-N, Du H, et al. Evolutionary and comparative expression analyses of TCP transcription factor gene family in land plants. Int J Mol Sci. 2019;20(14):3591. doi:10.3390/ijms20143591.
  • Liu X-M, Cheng S-Y, Ye J-B, Chen Z-X, Liao Y-L, Zhang -W-W, Kim S-U, Xu F. Screening and identification of miRNAs related to sexual differentiation of strobili in Ginkgo biloba by integration analysis of small RNA, RNA, and degradome sequencing. BMC Plant Biol. 2020;20(1):387. doi:10.1186/s12870-020-02598-8.
  • Lan J, Qin G. The regulation of CIN-like TCP transcription factors. Int J Mol Sci. 2020;21(12):4498. doi:10.3390/ijms21124498.
  • Xie Y-G, Ma -Y-Y, Bi -P-P, Wei W, Liu J, Hu Y, Gou Y-J, Zhu D, Wen Y-Q, Feng J-Y, et al. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiol Biochem. 2020;146:374–383. doi:10.1016/j.plaphy.2019.11.004.
  • Wei W, Hu Y, Cui M-Y, Han Y-T, Gao K, Feng J-Y. Identification and transcript analysis of the TCP transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci. 2016;7:1937. doi:10.3389/fpls.2016.01937.
  • Orozco-Solis R, Aguilar-Arnal L. Circadian regulation of immunity through epigenetic mechanisms. Front Cell Infect Microbiol. 2020;10:96. doi:10.3389/fcimb.2020.00096.
  • Simon NML, Graham CA, Comben NE, Hetherington AM, Dodd AN. The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol. 2020;183(1):317–330. doi:10.1104/pp.20.00030.
  • Lei N, Yu X, Li S, Zeng C, Zou L, Liao W, Peng M. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep. 2017;7(1):10016. doi:10.1038/s41598-017-09398-5.
  • Li S. TheArabidopsis thaliana TCP transcription factors: a broadening horizon beyond development. Plant Signal Behav. 2015;10(7):e1044192. doi:10.1080/15592324.2015.1044192.
  • Zhang S, Zhou Q, Chen F, Wu L, Liu B, Li F, Zhang J, Bao M, Liu G. Genome-wide identification, characterization and expression analysis of TCP transcription factors in Petunia. Int J Mol Sci. 2020;21(18):6594. doi:10.3390/ijms21186594.
  • Gao Y, Zhang D, Li J. TCP1 modulates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana. J Genet Genomics. 2015;42(7):383–392. doi:10.1016/j.jgg.2015.04.009.
  • Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature. 2020;583(7815):277–281. doi:10.1038/s41586-020-2382-x.
  • Mukhopadhyay P, Tyagi AK. OsTCP19 influences developmental and abiotic stress signaling by modulatingABI4-mediated pathways. Sci Rep. 2015;5(1):9998. doi:10.1038/srep09998.
  • Liu H-L, Wu M, Li F, Gao Y-M, Chen F, Xiang Y. TCP transcription factors in Moso Bamboo (Phyllostachys edulis): genome-wide identification and expression analysis. Front Plant Sci. 2018;9:1263. doi:10.3389/fpls.2018.01263.
  • Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, Zhou X, Kuai B. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana. Plant J. 2015;82(1):151–162. doi:10.1111/tpj.12803.
  • Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207. doi:10.1016/j.jaci.2017.08.034.
  • Song X, Li Y, Cao X, MicroRNAs QY. and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol. 2019;70:489–525. doi:10.1146/annurev-arplant-050718-100334.
  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z. PMRD: plant microRNA database. Nucleic Acids Res. 2010;38(Database issue):D806–D813. doi:10.1093/nar/gkp818.
  • Spanudakis E, Jackson S. The role of microRNAs in the control of flowering time. J Exp Bot. 2014;65(2):365–380. doi:10.1093/jxb/ert453.
  • Jia Z, Zhao B, Liu S, Lu Z, Chang B, Jiang H, Cui H, He Q, Li W, Jin B, et al. Embryo transcriptome and miRNA analyses reveal the regulatory network of seed dormancy in Ginkgo biloba. Tree Physiol. 2021;41(4):571–588. doi:10.1093/treephys/tpaa023.
  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell. 2007;13(1):115–125. doi:10.1016/j.devcel.2019.09.016.
  • Wang L, Cui J, Jin B, Zhao J, Xu H, Lu Z, Li W, Li X, Li L, Liang E, et al. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc Natl Acad Sci USA. 2020;117(4):2201–2210. doi:10.1073/pnas.1916548117.
  • Gupta OP, Dahuja A, Sachdev A, Kumari S, Jain PK, Vinutha T, Praveen S. Conserved miRNAs modulate the expression of potential transcription factors of isoflavonoid biosynthetic pathway in soybean seeds. Mol Biol Rep. 2019;46(4):3713–3730. doi:10.1007/s11033-019-04814-7.
  • Albert NW, Thrimawithana AH, McGhie TK, Clayton WA, Deroles SC, Schwinn KE, Bowman JL, Jordan BR, Davies KM. Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytol. 2018;218(2):554–566. doi:10.1111/nph.15002.
  • Kennedy DO, Wightman EL. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011;2(1):32–50. doi:10.3945/an.110.000117.
  • Zhao B, Wang L, Pang S, Jia Z, Wang L, Li W, Jin B. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Ind Crop Prod. 2020;151:112483. doi:10.1016/j.indcrop.2020.112483.
  • Xu F, Ning Y, Zhang W, Liao Y, Li L, Cheng H, Cheng S. An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Funct Integr Genomics. 2014;14(1):177–189. doi:10.1007/s10142-013-0352-1.
  • Su X, Xia Y, Jiang W, Shen G, Pang Y. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. Planta. 2020;252(4):68. doi:10.1007/s00425-020-03476-1.
  • Guo Y, Wang T, Fu -F-F, El-Kassaby YA, Wang G. Temporospatial flavonoids metabolism variation in leaves. Front Genet. 2020;11:589326. doi:10.3389/fgene.2020.589326.
  • An J-P, Liu Y-J, Zhang X-W, Bi S-Q, Wang X-F, You C-X, Hao Y-J. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. J Exp Bot. 2020;71(10):3094–3109. doi:10.1093/jxb/eraa056.