1,626
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

HRM and CRAC in MxIRT1 act as iron sensors to determine MxIRT1 vesicle-PM fusion and metal transport

, , , , &
Article: 2005881 | Received 26 Sep 2021, Accepted 09 Nov 2021, Published online: 23 Nov 2021

References

  • Vert GA, Briat JF, and Curie C. Dual regulation of the arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 2003;132(2):796–12.
  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, and Curie C. IRT1, an arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 2002;14:1223–1233.
  • Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing arabidopsis iron uptake. Trends Plant Sci. 2015;20:124–133.
  • Tan S, and Yin L. Research of the iron-regulated transporter 1 (IRT1) in the past decades and its latest development. Chin Sci Bull. 2016;62:350–359.
  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, and Ling HQ. Fit interacts with atbhlh38 and atbhlh39 in regulating iron uptake gene expression for iron homeostasis in arabidopsis. Cell Res. 2008;18:385–397.
  • Khan I, Gratz R, Denezhkin P, Schott-Verdugo SN, Angrand K, Genders L, Basgaran RM, Fink-Straube C, Brumbarova, T, and Gohlke, H. Calcium-promoted interaction between the c2-domain protein EHB1 and metal transporter IRT1 inhibits arabidopsis iron acquisition. Plant Physiol. 2019;180:1564–1581.
  • Dubeaux G, Neveu J, Zelazny E, and Vert, G. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Mol Cell. 2018;69:953–964 e955.
  • Eide D, Broderius M, Fett J, and Guerinot, ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS. 1996;93:5624–5628
  • Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G. Monoubiquitin-dependent endocytosis of the iron-regulated transporter1 transporter controls iron uptake in plants. PNAS. 2011;108:E450–E458.
  • Barberon M, Dubeaux G, Kolb C, Isono, E, Zelazny, E, and Vert, G. Polarization of iron-regulated transporter 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. PNAS. 2014;111:8293–8298.
  • Shin LJ, Lo JC, Chen GH, Callis J, Fu H, and Yeh K-C. IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in arabidopsis. Plant Cell. 2013;25:3039–3051.
  • Li W, Schmidt W. Non-proteolytic protein ubiquition is crucial for iron deficiency signaling. Plant Sig Behav. 2010;5:561–563.
  • Xu J, Li HD, Chen LQ, Wang Y, Liu L-L, He L, and Wu W-H. A protein kinase, interacting with two calcineurin b-like proteins, regulates k+ transporter AKT1 in arabidopsis. Cell. 2006;125:1347–1360.
  • Ho CH, Lin SH, Hu HC, and Tsay YF. Chl1 functions as a nitrate sensor in plants. Cell. 2009;138:1184–1194.
  • Ragel P, Rodenas R, Garcia-Martin E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, and Quintero FJ. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity k+ uptake in arabidopsis roots. Plant Physiol. 2015;169:2863–2873.
  • Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, and Bauer P. Sorting nexin1 is required for modulating the trafficking and stability of the arabidopsis iron-regulated transporter1. Plant Cell. 2014;26:1294–1307.
  • Li P, Qi JL, Wang LY, Huang Q-N, Han Z-H, and Yin L-P. Functional expression of MxIRT1, from malus xiaojinensis, complements an iron uptake deficient yeast mutant for plasma membrane targeting via membrane vesicles trafficking process. Plant Sci. 2006;171:52–59.
  • Wang LY, Feng B, Li P, Yang G, and Yin LP. Fusion of MxIRT1 vesicles and plasma membrane is a key regulation step of high affinity iron transport in response to iron supplement in transgenic yeast. Asian J Chem. 2012;24:2394–2400.
  • Li S, Zhang X, Zhang XY, Xiao W, Berry JO, Li P, Jin S, Tan S, Zhang P, Zhao W-Z. Expression of malus xiaojinensis irt1 (mxirt1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron. Yeast. 2015;32:499–517.
  • Zhang XN, Han ZH, Yin LL, Kong J, Xu XF, Zhang XZ, and Wang Y. Heterologous functional analysis of the Malus Xiaojinensis MxIRT1 gene and the His-box motif by expression in yeast. Mol Biol Rep. 2013;40:1499–1504.
  • Tan S, Zhang P, Xiao W, Feng B, Chen LY, Li S, Li P, Zhao WZ, Qi XT, and Yin LP. TMD1 domain and CRAC motif determine the association and disassociation of MxIRT1 with detergent-resistant membranes. Traffic. 2018;19:122–137.
  • Zhang P, Tan S, Berry JO, Li P, Na R, Li S, Yang G, Wang WB, Qi XT, and Yin LP. An uncleaved signal peptide directs the Malus Xiaojinensis iron transporter protein MxIRT1 into the ER for the PM secretory pathway. Int J Mol Sci. 2014;15:20413–20433.
  • Na R, Zhang P, Ma DK, Wang Y, Li S, and Yin LP. Overexpression of OsDPR, a novel rice gene highly expressed under iron deficiency, suppresses plant growth. Sci China Life Sci. 2012;55:1082–1091.
  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang WB, Zhao WZ, and Yin LP. Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res. 2015;24:109–122.
  • Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, and Nishizawa NK. The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J. 2012;69:81–91.
  • Zhang XY, Zhang X, Zhang Q, Pan XX, Yan LC, Ma XJ, Zhao WZ, Qi XT, and Yin LP. Zea mays fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots. Plant J. 2017;90:147–163.
  • Li S, Pan XX, Berry JO, Wang Y, Na R, Ma S, Tan S, Xiao W, Zhao WZ, Sheng XY, and Yin LP. OsSEC24, a functional sec24-like protein in rice, improves tolerance to iron deficiency and high ph by enhancing H(+) secretion mediated by PM-H(+)-ATPase. Plant Sci. 2015;233:61–71.
  • Ivanov R, Vert G. Endocytosis in plants: peculiarities and roles in the regulated trafficking of plant metal transporters. Biol Cell. 2020;113:1–13.
  • Protopopov V, Govindan B, Novick P, and Gerst JE. Homologs of the synaptobrevin/vamp family of synaptic vesicle proteins function on the late secretory pathway in S. Cerevisiae. Cell. 1993;74:855–861.
  • Nicholson KL, Munson M, Miller RB, Filip TJ, Fairman R, and Hughson FM. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat Struct Biol. 1998;5:793–802.
  • Potocki S, Valensin D, and Kozlowski H. The specificity of interaction of Zn(2+), Ni(2+) and Cu(2+) ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans. 2014;43:10215–10223.
  • Zoroddu MA, Peana M, Medici S, Potocki S, and Kozlowski H. Ni(ii) binding to the 429-460 peptide fragment from human toll like receptor (hTLR4): a crucial role for nickel-induced contact allergy? Dalton Trans. 2014;43:2764–2771.
  • Ajeesh KTP, Maharajan T, Victor RG, Ignacimuthu, S, and Antony, CS. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci. 2020;11:662.
  • Rogers EE, Eide DJ, Guerinot ML. Altered selectivity in an arabidopsis metal transporter. PNAS. 2000;97:12356–12360.
  • Fantini J, Epand RM, Barrantes FJ. Cholesterol-recognition motifs in membrane proteins. Adv Exp Med Biol. 2019;1135:3–25.
  • Martin-Barranco A, Spielmann J, Dubeaux G, Vert, G, and Zelazny, E. Dynamic control of the high-affinity iron uptake complex in root epidermal cells. Plant Physiol. 2020;184:1236–1250.