2,416
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat (Triticum aestivum L.)

, , , , , , , , , , , , , & ORCID Icon show all
Article: 2013646 | Received 12 Oct 2021, Accepted 29 Nov 2021, Published online: 17 Jan 2022

References

  • Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell. 2010;22(3):541–11. doi:10.1105/tpc.109.072686
  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, et al. Advances and current challenges in calcium signaling. New Phytol. 2018;218(2):414–431. doi:10.1111/nph.14966
  • Mohanta TK, Yadav D, Khan AL, Hashem A, Abd Allah EF, Al-Harrasi A. Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci. 2019;20(6):1476. doi:10.3390/ijms20061476
  • McCormack E, Tsai Y-C, Braam J. Handling calcium signaling: arabidopsis CaMs and CMLs. Trends Plant Sci. 2005;10(8):383–389. doi:10.1016/j.tplants.2005.07.001
  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah B. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci. 2015;6:600. doi:10.3389/fpls.2015.00600
  • Zhu X, Dunand C, Snedden W, Galaud J-P. CaM and CML emergence in the green lineage. Trends Plant Sci. 2015;20(8):483–489. doi:10.1016/j.tplants.2015.05.010
  • Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyay S. Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cell. 2014;26(3):1036–1052. doi:10.1105/tpc.113.122515
  • Yamniuk AP, Vogel HJ. Structural investigation into the differential target enzyme regulation displayed by plant calmodulin isoforms. Biochemistry. 2005;44:3101–3111. doi:10.1021/bi047770y
  • Wang SS, Diao WZ, Yang X, Qiao Z, Wang M, Acharya BR, et al. Arabidopsis thaliana CML25 mediates the Ca2+ regulation of K+ transmembrane trafficking during pollen germination and tube elongation. Plant Cell Environ. 2015;38:2372–2386. doi:10.1111/pce.12559
  • Yang X, Wang SS, Wang M, Qiao Z, Bao CC, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Mol Biol. 2014;86(3):225–236. doi:10.1007/s11103-014-0220-y
  • Tsai YC, Koo Y, Delk NA, Gehl B, Braam J. Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. Plant J. 2013;73(2):325–335. doi:10.1111/tpj.12043
  • Bender KW, Rosenbaum DM, Vanderbeld B, Ubaid M, Snedden WA. The Arabidopsis calmodulin-like protein, CML39, functions during early seedling establishment. Plant J. 2013;76(4):634–647. doi:10.1111/tpj.12323
  • Midhat U, Ting MKY, Teresinski HJ, Snedden WA. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis. Plant Mol Biol. 2018;96:375–392. doi:10.1007/s11103-018-0703-3
  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, et al. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 2003;132(3):1186–1195. doi:10.1104/pp.102.018564
  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, et al. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol. 2009;149(4):1773–1784. doi:10.1104/pp.108.133744
  • Zhou RG, Li B, Liu HT, Sun DY. Progress in the participation of Ca2+–calmodulin in heat shock signal transduction. Prog Nat Sci. 2009;19(10):1201–1208. doi:10.1016/j.pnsc.2008.12.011
  • Munir S, Liu H, Xing Y, Hussain S, Ouyang B, Zhang Y, et al. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep. 2016b;6:31772. doi:10.1038/srep31772
  • Xu G-Y, Rocha PS, Wang M-L, Xu M-L, Cui Y-C, Li L-Y, et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta. 2011;234(1):47–59. doi:10.1007/s00425-011-1386-z
  • Xu G, Cui Y, Li M, Wang M, Yu Y, Zhang B, et al. OsMSR2, a novel rice calmodulin-like gene, confers enhanced salt tolerance in rice (Oryza sativa L.). Aust J Crop Sci. 2013;7(3):368.
  • Yin XM, Huang LF, Zhang X, Wang ML, Xu GY, Xia XJ. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice. J Plant Biol. 2015;58(1):68–73. doi:10.1007/s12374-014-0349-x
  • Rao SS, El‐Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, et al. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol. 2014;15(2):145–160. doi:10.1111/mpp.12075
  • Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, et al. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding. PLOS Genet. 2016;12(9):e1006255. doi:10.1371/journal.pgen.1006255
  • Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 2007;7:4. doi:10.1186/1471-2229-7-4
  • Munir S, Khan MR, Song J, Munir S, Zhang Y, Ye Z, et al. Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). Plant Physiol Biochem. 2016a;102:167–179. doi:10.1016/j.plaphy.2016.02.020
  • Zhao Y, Liu W, Xu YP, Cao JY, Braam J, Cai XZ. Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol. 2013;13:70. doi:10.1186/1471-2229-13-70
  • Liao J, Deng J, Qin Z, Tang J, Shu M, Ding C, et al. Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in Lotus japonicas. Front Plant Sci. 2017;8:482. doi:10.3389/fpls.2017.00482
  • Nie S, Zhang M, Zhang L. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics. 2017;18(1):842. doi:10.1186/s12864-017-4240-2
  • Chunlong L, Dong M, Junhong Z, Lailiang C. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple (Malus × domestica). Plant Physiology and Biochemistry. 2019;139:600–612.
  • Yang T, Segal G, Abbo S, Feldman M, Fromm H. Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet. 1996;252(6):684–694. doi:10.1007/BF02173974
  • Kalaipandian S, Xue GP, Rae AL, Glassop D, Bonnett GD, McIntyre LC. Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat. Physiol Plant. 2019;165(4):790–799. doi:10.1111/ppl.12786
  • Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788. doi:10.1126/science.1251788
  • Wang M, Yue H, Feng KW, Deng PC, Song WN, Nie XJ. Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC Genomics. 2016;17:668. doi:10.1186/s12864-016-2993-7
  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, et al. Pfam: clans, web tools and services. Nucleic Acids Res. 2006;34:D247–251. doi:10.1093/nar/gkj149
  • Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29(19):2487–2489. doi:10.1093/bioinformatics/btt403
  • Gasteiger E, C H, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. Totowa, NJ, USA: Humana Press; 2005.
  • Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006;64(3):643–651. doi:10.1002/prot.21018
  • Thompson J, Gibson T, Higgins D. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;2:1–22.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi:10.1093/molbev/msy096
  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–1297. doi:10.1093/bioinformatics/btu817
  • Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015;43(W1):W39–49. doi:10.1093/nar/gkv416
  • Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi:10.1016/j.molp.2020.06.009
  • Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, Lee TH, Jin HZ, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. doi:10.1093/nar/gkr1293
  • Higo K, Ugawa Y, Iwamoto M, Higo H. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 1998;26:358–359. doi:10.1093/nar/26.1.358
  • Tyagi S, Himani SJ, Upadhyay K, K S. Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.). J Plant Physiol. 2018;223:19–31. doi:10.1016/j.jplph.2018.02.006
  • Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, et al. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol. 2015;16:29. doi:10.1186/s13059-015-0601-9
  • Yang F, Dong FS, Hu FH, Liu YW, Chai JF, Zhao H, Lv MY, Zhou S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet. 2020;21:105. doi:10.1186/s12863-020-00916-5
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345(6194):1249721. doi:10.1126/science.1249721
  • Zhang QY, Liu XJ, Liu X, Wang JH, Yu JQ, Hu DG, Hao YJ. Genome-wide identification, characterization, and expression analysis of calmodulin-like proteins (CMLs) in apple. Hortic Plant J. 2017;3(6):219–231. doi:10.1016/j.hpj.2017.12.002
  • Devos KM, Dubcovsky J, Dvo~fik J, Chinoy CN, Gale MD. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet. 1995;91:282–288. doi:10.1007/BF00220890
  • Bottley A, Xia GM, Koebner RM. Homoeologous gene silencing in hexaploid wheat. Plant J. 2006;47(6):897–906. doi:10.1111/j.1365-313X.2006.02841.x
  • Abhinandan K, Skori L, Stanic M, Hickerson NMN, Jamshed M, Samuel MA. Abiotic stress signaling in wheat - an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci. 2018;9:734. doi:10.3389/fpls.2018.00734
  • Delk NA, Johnson KA, Chowdhury NI, Braam J. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 2005;139(1):240–253. doi:10.1104/pp.105.062612
  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D. Mutations in AtCML9, a calmodulin‐like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 2008;56(4):575–589. doi:10.1111/j.1365-313X.2008.03622.x
  • Scholz S, Reichelt M, Vadassery J, Mithöfer A. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. Plant Signal Behav. 2015;10(6):e1011951. doi:10.1080/15592324.2015.1011951
  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol. 2012;159(3):1159–1175. doi:10.1104/pp.112.198150
  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci. 2005;102(44):16107–16112. doi:10.1073/pnas.0504437102
  • Zhang X, Wang W, Kang X, Zhao L. Arabidopsis CaM3 inhibits nitric oxide accumulation and improves thermotolerance by promoting S-nitrosoglutathione reductase via direct binding. Plant Growth Regul. 2019a;90(1):41–50. doi:10.1007/s10725-019-00552-9
  • Wu HC, Luo DL, Vignols F, Jinn TL. Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ. 2012;35(9):1543–1557. doi:10.1111/j.1365-3040.2012.02508.x
  • Zhang XX, Wang TZ, Liu M, Sun W, Zhang WH. Calmodulin-like gene MtCML40 is involved in salt tolerance by regulating MtHKTs transporters in Medicago truncatula. Environ Exp Bot. 2019b;157:79–90. doi:10.1016/j.envexpbot.2018.09.022