2,338
Views
1
CrossRef citations to date
0
Altmetric
Review

LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape

, &
Article: 2014677 | Received 13 Nov 2021, Accepted 01 Dec 2021, Published online: 30 Mar 2022

References

  • Fournier-Level A, Perry, EO, Wang, JA, Braun, PT, Migneault, A, Cooper, MD, Metcalf, CJE, Schmitt, J. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 113, E2812–6, doi:10.1073/pnas.1517456113 (2016).
  • Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. doi:10.1111/pce.12061.
  • Zhuo C, Liang L, Zhao Y, Guo Z, Lu S. A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell Environ. 2018;41:2021–2032. doi:10.1111/pce.13114.
  • Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi:10.1016/j.tplants.2009.11.009.
  • Ruelland E, Vaultier MN, Zachowski A, Hurry V. Cold Signalling and Cold Acclimation in Plants. Adv Bot Res. 2009;49:35–150. doi:10.1016/S0065-2296(08)00602-2.
  • Alonso A, Queiroz CS, Magalhaes AC. Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L) seedlings. Bba-Biomembranes. 1997;1323:75–84. doi:10.1016/S0005-2736(96)00177-0.
  • Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol. 1997;115:875–879. doi:10.1104/pp.115.3.875.
  • Miquel M, James D, Dooner H, Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A. 1993;90:6208–6212. doi:10.1073/pnas.90.13.6208.
  • Okuley J, Jonathan L, Kenneth F, Yadav BN, Lark BE. Arabidopsis Fad2 gene encodes the enzyme that is essential for polyunsaturated lipid-synthesis. Plant Cell. 1994;6:147–158. doi:10.1105/tpc.6.1.147.
  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E. Rapid responses of plants to temperature changes. Temperature (Austin, Tex). 2017;4:371–405. doi:10.1080/23328940.2017.1377812.
  • Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci. 2002;981:82–96. doi:10.1111/j.1749-6632.2002.tb04913.x.
  • Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019;222:1690–1704. doi:10.1111/nph.15696.
  • Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, Zhang R, Nimmo HG, Brown JWS. Cold-Dependent expression and alternative splicing of arabidopsis long non-coding RNAs. Front Plant Sci. 2019;10:235. doi:10.3389/fpls.2019.00235.
  • Ji H, Niu C, Zhan X, Xu J, Lian S, Xu B, Guo J, Zhen L, Yang H, Li S, Ma L. Identification, functional prediction, and key lncRNA verification of cold stress-related lncRNAs in rats liver. Sci Rep. 2020;10:521. doi:10.1038/s41598-020-57451-7.
  • Kindgren P, Ard R, Ivanov M, Marquardt S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun. 2018;9:4561. doi:10.1038/s41467-018-07010-6.
  • Lu Q, Guo F, Xu Q, Cang J. LncRNA improves cold resistance of winter wheat by interacting with miR398. Funct Plant Biol. 2020;47:544–557. doi:10.1071/fp19267.
  • Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature. 2009;462:799–802. doi:10.1038/nature08618.
  • Wang P, Dai L, Ai J, Wang Y, Ren F. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine. Sci Rep. 2019;9:6638. doi:10.1038/s41598-019-43269-5.
  • Zhao M, Wang T, Sun T, Yu X, Tian R, Zhang WH. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC Plant Biol. 2020;20:99. doi:10.1186/s12870-020-2301-1.
  • Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011;331:76–79. doi:10.1126/science.1197349.
  • Kim DH, Sung S. Vernalization-Triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell. 2017;40:302–312.e304. doi:10.1016/j.devcel.2016.12.021.
  • Kim DH, Xi Y, Sung S. Modular function of long noncoding RNA, COLDAIR, in the vernalization response. PLoS Genet. 2017;13:e1006939. doi:10.1371/journal.pgen.1006939.
  • Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun. 2018;9:5056. doi:10.1038/s41467-018-07500-7.
  • Fick RJ, Trievel RC. An overview of chromatin modifications. Biopolymers. 2013;99:95–97. doi:10.1002/bip.22158.
  • Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function. Biol Chem. 2008;389:353–363. doi:10.1515/bc.2008.048.
  • Hirose S. Chromatin remodeling and transcription. J Biochem. 1998;124:1060–1064. doi:10.1093/oxfordjournals.jbchem.a022220.
  • Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochimica Et Biophysica Acta. 2014;1839:728–736. doi:10.1016/j.bbagrm.2014.02.013.
  • Wang R, Zeng X-L. ATP-dependent chromatin remodeling complex and its function in regulating chromatin structure. Yichuan. 2010;32:301–306. doi:10.3724/sp.J.1005.2010.00301.
  • Baroux C, Pien S, Grossniklaus U. Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev. 2007;17:473–479. doi:10.1016/j.gde.2007.09.004.
  • Chen D-H, Huang Y, Jiang C, Si J-P. Chromatin-Based regulation of plant root development. Front Plant Sci. 2018:9. doi:10.3389/fpls.2018.01509.
  • Farrona S, Mozgova I, Archacki R, Casas-Mollano JA. Editorial: chromatin stability and dynamics: targeting and recruitment of chromatin modifiers. Front Plant Sci. 2021:12. doi:10.3389/fpls.2021.678702.
  • Zhao T, Zhan Z, Jiang D. Histone modifications and their regulatory roles in plant development and environmental memory. J Genetics Genomics. 2019;46:467–476. doi:10.1016/j.jgg.2019.09.005.
  • Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci. 2021;78:4467–4486. doi:10.1007/s00018-021-03794-x.
  • Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K. Chromatin modifications and remodeling in plant abiotic stress responses. Biochimica Et Biophysica Acta. 2012;1819:129–136. doi:10.1016/j.bbagrm.2011.06.008.
  • Yuan L, Liu X, Luo M, Yang S, Wu K. Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol. 2013;55:892–901. doi:10.1111/jipb.12060.
  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998;16:433–442. doi:10.1046/j.1365-313x.1998.00310.x.
  • Hu Y, Zhang L, Zhao L, Li J, He S, Zhou K, Yang F, Huang M, Jiang L, Li L. Trichostatin a selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. Plos One. 2011;6. doi:10.1371/journal.pone.0022132.
  • Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S. Differential acetylation of histone H3 at the regulatory region of OsDREB1b Promoter facilitates chromatin remodelling and transcription activation during cold stress. Plos One. 2014;9. doi:10.1371/journal.pone.0100343.
  • Kwon CS, Lee D, Choi G, Chung W-I. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J. 2009;60:112–121. doi:10.1111/j.1365-313X.2009.03938.x.
  • Stockinger EJ, Mao YP, Regier MK, Triezenberg SJ, Thomashow MF. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 2001;29:1524–1533. doi:10.1093/nar/29.7.1524.
  • Dong C-H, Agarwal M, Zhang Y, Xie Q, Zhu J-K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the United States of America 103, 8281–8286, doi:10.1073/pnas.0602874103 (2006).
  • Jung J-H, Park C-M. HOS1-mediated activation of FLC via chromatin remodeling under cold stress. Plant Signal Behav. 2013;8:e27342–Article No.: e27342. doi:10.4161/psb.27342.
  • Jung JH, Park JH, Lee S, To TK, Kim JM, Seki M, Park CM. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE Gene1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. Plant Cell. 2013;25:4378–4390. doi:10.1105/tpc.113.118364.
  • Zhu J, et al. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America 105, 4945–4950, doi:10.1073/pnas.0801029105 (2008).
  • Dennis ES, Helliwell CA, Peacock WJ. Vernalization: spring into flowering. Dev Cell. 2006;11:1–2. doi:10.1016/j.devcel.2006.06.007.
  • Dennis ES, Peacock WJ. Vernalization in cereals. J Biol. 2009;8:57–Article No.: 57. doi:10.1186/jbiol156.
  • Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11:949–956. doi:10.1105/tpc.11.5.949.
  • Hu X, Kong X, Wang C, Ma L, Zhao J, Wei J, Zhang X, Loake GJ, Zhang T, Huang J, et al. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during Vernalization. Plant Cell. 2014;26:4763–4781. doi:10.1105/tpc.114.132738.
  • Li Z, Jiang D, He Y. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Nat Plants. 2018;4:836–846. doi:10.1038/s41477-018-0250-6.
  • De Lucia F, Crevillen P, Jones AME, Greb T, Dean C. A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization. Proceedings of the National Academy of Sciences of the United States of America 105, 16831–16836, doi:10.1073/pnas.0808687105 (2008).
  • Yuan W, Luo X, Li Z, Yang W, Wang Y, Liu R, Du J, He Y. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat Genet. 2016;48:1527–1534. doi:10.1038/ng.3712.
  • Chen -L-L. Linking Long Noncoding RNA Localization and Function. Trends Biochem Sci. 2016;41:761–772. doi:10.1016/j.tibs.2016.07.003.
  • Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? Sci Advan. 2017:3. doi:10.1126/sciadv.aao2110.
  • Wu Y, Cheng T, Liu C, Liu D, Zhang Q, Long R, Zhao P, Xia Q. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm, Bombyx mori. Plos One. 2016;11. doi:10.1371/journal.pone.0147147.
  • Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol. 2019;112:82–92. doi:10.1016/j.molimm.2019.04.011.
  • Yang Z, Wang K, Aziz U, Zhao C, Zhang M. Evaluation of duplicated reference genes for quantitative real-time PCR analysis in genome unknown hexaploid oat (Avena sativaL.). Plant Methods. 2020:16. doi:10.1186/s13007-020-00679-1.
  • Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci. 2019;20. doi:10.3390/ijms20225573.
  • Wang T-Z, Liu M, Zhao M-G, Chen R, Zhang W-H. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol. 2015:15. doi:10.1186/s12870-015-0530-5.
  • Zhao M, Wang T, Sun T, Yu X, Tian R, Zhang WH. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC Plant Biol. 2020;20. doi:10.1186/s12870-020-2301-1.
  • Lu Q, Guo F, Xu Q, Cang J. LncRNA improves cold resistance of winter wheat by interacting with miR398. FunctPlant Biol. 2020;47:544–557. doi:10.1071/fp19267.
  • Kindgren P, Ard R, Ivanov M, Marquardt S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun. 2018:9. doi:10.1038/s41467-018-07010-6.
  • Moison M, Martinez Pacheco C, Lucero L, Fonouni-Farde C, Rodriguez-Melo J, Mansilla N, Christ A, Bazin J, Benhamed M, Ibanez F, et al. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Mol Plant. 2021;14:937–948. doi:10.1016/j.molp.2021.03.008.
  • Csorba T, Questa JI, Sun Q, Dean C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proceedings of the National Academy of Sciences of the United States of America 111, 16160–16165, doi:10.1073/pnas.1419030111 (2014).
  • Heo JB, Lee Y-S, Sung S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res. 2013;21:685–693. doi:10.1007/s10577-013-9392-6.
  • Kim D-H, Sung S. Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs. Dev Cell. 2017;40:302–312. doi:10.1016/j.devcel.2016.12.021.
  • Kim D-H, Xi Y, Sung S. Modular function of long noncoding RNA, COLDAIR, in the vernalization response. PLoS Genet. 2017:13. doi:10.1371/journal.pgen.1006939.
  • Heo JB, Sung S. Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA. Science. 2011;331:76–79. doi:10.1126/science.1197349.
  • Tian Y, Zheng H, Zhang F, Wang S, Ji X, Xu C, He Y, Ding Y. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. Sci Advan. 2019;5. doi:10.1126/sciadv.aau7246.
  • Fang X, Wang L, Ishikawa R, Li YX, Fiedler M, Liu FQ, Calder G, Rowan B, Weigel D, Li PL, et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature. 2019;569:265–269. doi:10.1038/s41586-019-1165-8.
  • Huo Y, Yan Z, Zhang B, Wang X. Recruitment of Polycomb Repressive Complex 2 is Essential to Suppress the Target Chromatin in Arabidopsis. CRC Crit Rev Plant Sci. 2016;35:131–145. doi:10.1080/07352689.2016.1245055.
  • Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, Song C, Zhuang M, Klasfeld S, He C, et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet. 2017;49:1546-+. doi:10.1038/ng.3937.
  • Maclary E, Hinten M, Harris C, Sethuraman S, Gayen S, Kalantry S . PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice. Genome Biol. 2017;18. doi:10.1186/s13059-017-1211-5.
  • Wang L, Zeng X, Chen S, Ding L, Zhong J, Zhao JC, Wang L, Sarver A, Koller A, Zhi J, et al. BRCA1 is a negative modulator of the PRC2 complex. Embo J. 2013;32:1584–1597. doi:10.1038/emboj.2013.95.