1,670
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

A DEK domain-containing protein GhDEK2D mediated Gossypium hirsutum enhanced resistance to Verticillium dahliae

, , , , , , , , , & ORCID Icon show all
Article: 2024738 | Received 08 Dec 2021, Accepted 28 Dec 2021, Published online: 16 Jan 2022

References

  • Ai XT, Liang YJ, Wang JD, Zheng JY, Gong ZL, Guo JP, Li X, Qu Y. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data. Genetica. 2017;145:409–13. doi:10.1007/s10709-017-9976-8.
  • Zhang XY, Wang LM, Xu XY, Cai CP, Guo WZ. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton. Bmc Plant Biol. 2014;14:14. doi:10.1186/1471-2229-14-14.
  • Zhang JF, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RG . Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica. 2012; 187:147–160. doi:10.1007/s10681-011-0549-0.
  • Fradin EF, Thomma BPHJ. Physiology and molecular aspects of Verticillium wilt diseases caused by V-dahliae and V-albo-atrum. Mol Plant Pathol. 2006;7:71–86. doi:10.1111/j.1364-3703.2006.00323.x.
  • Zhou JL, Feng ZL, Liu SC, Wei F, Shi YQ, Zhao LH, Huang W, Zhou Y, Feng H, Zhu H . CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses. Mol Plant Pathol. 2021;22:130–144. doi:10.1111/mpp.13014.
  • Guo XH, Cai CP, Yuan DD, Zhang RS, Xi JL, Guo WZ. Development and identification of Verticillium wilt-resistant upland cotton accessions by pyramiding QTL related to resistance. J Integr Agr. 2016;15:512–520. doi:10.1016/S2095-3119(15)61083-8.
  • Yakubu RR, Weiss LM, de Monerri NCS. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol Microbiol. 2018;107:1–23. doi:10.1111/mmi.13867.
  • Hong G, Su X, Xu K, Liu B, Wang G, Li J, Wang R, Zhu M, Li G. Salt stress downregulates 2-hydroxybutyrylation in Arabidopsis siliques. J Proteomics. 2022;250:104383. doi:10.1016/j.jprot.2021.104383.
  • Rao RSP, Thelen JJ, Miernyk JA. Is Lys-N-epsilon-acetylation the next big thing in post-translational modifications? Trends Plant Sci. 2014;19:550–553. doi:10.1016/j.tplants.2014.05.001.
  • Zulawski M, Braginets R, Schulze WX. PhosPhAt goes kinases-searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res. 2013;41:D1176–D84. doi:10.1093/nar/gks1081.
  • Sathyanarayanan PV, Poovaiah BW. Decoding Ca2+ signals in plants. CRC Crit Rev Plant Sci. 2004;23:1–11. doi:10.1080/07352680490273310.
  • Yin XJ, Wang X, Komatsu S. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Curr Protein Pept Sc. 2018;19:401–412. doi:10.2174/1389203718666170209151048.
  • Bredow M, Bender KW, Dingee AJ, Holmes DR, Thomson A, Ciren D, Tanney CAS, Dunning KE, Trujillo M, Huber SC, Monaghan J . Phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28. P Natl Acad Sci USA . 2021; 19:118. . doi:10.1073/pnas.2024272118.
  • Park CJ, Caddell DF, Ronald PC. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front Plant Sci. 2012;3. doi:10.3389/fpls.2012.00003.
  • Von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G . The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol. 1992;12:1687–1697. doi:10.1128/mcb.12.4.1687-1697.1992.
  • Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA, Cripe TP, Grosveld GC, Wells SI. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res. 2009;69:1792–1799. doi:10.1158/0008-5472.CAN-08-2304.
  • Riveiro-Falkenbach E, Soengas MS. Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin Cancer Res. 2010;16:2932–2938. doi:10.1158/1078-0432.CCR-09-2330.
  • Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein–an abundant and ubiquitous constituent of mammalian chromatin. Gene. 2004;343:1–9. doi:10.1016/j.gene.2004.08.029.
  • van Zanten M, Tessadori F, Peeters AJ, Fransz P. Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. Mol Plant. 2012;5:583–590. doi:10.1093/mp/sss030.
  • Privette Vinnedge LM, Kappes F, Nassar N, Wells SI. Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle. 2013;12:51–66. doi:10.4161/cc.23121.
  • Kavanaugh GM, Wise-Draper TM, Morreale RJ, Morrison MA, Gole B, Schwemberger S, Tichy ED, Lu L, Babcock GF, Wells JM, et al. The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Res. 2011;39:7465–7476. doi:10.1093/nar/gkr454.
  • Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev. 2000;14:1308–1312. doi:10.1101/gad.14.11.1308.
  • Yang Y, Wu MY, Geng YQ, Liu XQ, Yang Y, Chen XM, Ding Y, He J, Wang Y, Xie L, et al. Roles of DEK in the endometrium of mice in early pregnancy. Gene. 2018;642:261–267. doi:10.1016/j.gene.2017.11.011.
  • Smith EA, Gole B, Willis NA, Soria R, Starnes LM, Krumpelbeck EF, Jegga AG, Ali AM, Guo H, Meetei AR, Andreassen PR, Kappes F, Privette Vinnedge LM, Daniel JA, Scully R, Wiesmüller L, Wells SI . DEK is required for homologous recombination repair of DNA breaks. Sci Rep-Uk. 2017;7: 44662. doi:10.1038/srep44662.
  • Waidmann S, Kusenda B, Mayerhofer J, Mechtler K, Jonak C. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis. Plant Cell. 2014;26:4328–4344. doi:10.1105/tpc.114.129254.
  • Zong W, Zhao B, Xi Y, Bordiya Y, Mun H, Cerda NA, Kim D-H, Sung S. DEK domain-containing proteins control flowering time in Arabidopsis. New Phytol. 2021;231:182–192. doi:10.1111/nph.17366.
  • Zhang H, Yan M, Deng R, Song F, Jiang M. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Gene. 2020;727:144245. doi:10.1016/j.gene.2019.144245.
  • Li ZF, Liu YJ, Feng ZL, Feng HJ, Klosterman SJ, Zhou FF, Zhao LH, Shi YQ, Zhu QH . VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae. Plos One. 2015;10:e0144020. doi:10.1371/journal.pone.0144020.
  • Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33:524–U242. doi:10.1038/nbt.3208.
  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, Llewellyn D, Showmaker KC, Shu S, Udall J, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492:423-+. doi:10.1038/nature11798.
  • Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi CC, Xiao GH, Gou CY, Ye WW, Zhang XY, Wei HL, Li ZF, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46:567–572. doi:10.1038/ng.2987.
  • Yuan DJ, Tang ZH, Wang MJ, Gao WH, Tu LL, Jin X, Chen LL, He YH, Zhang L, Zhu LF, Li Y, Liang QQ, Lin ZX, Yang XY, Liu N, Jin SX, Lei Y, Ding YH, Li GL, Ruan XA, Ruan YJ, et al. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific reports. 2015;5:1–16 . doi:10.1038/srep17662.
  • Chen ZJ, Sreedasyam A, Ando A, Song QX, De Santiago LM, Hulse-Kemp AM, Ding M, Ye W, Kirkbride RC, Jenkins J, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet. 2020;52:525-+. doi:10.1038/s41588-020-0614-5.
  • Shen C, Wang NA, Zhu D, Wang PC, Wang MJ, Wen TW, Le Y, Wu M, Yao T, Zhang X, et al. Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics. 2021;113:1999–2009. doi:10.1016/j.ygeno.2021.04.036.
  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Vol. . Science. 2006;313: 1596–1604 . doi:10.1126/science.1128691.
  • Bornowski N, Michel KJ, Hamilton JP, Ou S, Seetharam AS, Jenkins J, Grimwood J, Plott C, Shu S, Talag J, et al. Genomic variation within the maize stiff-stalk heterotic germplasm pool. The Plant Genome. 2021;14:e20114. doi:10.1002/tpg2.20114.
  • Alaba OA, Bredeson JV, Egesi CN, Esuma W, Ezenwaka L, Ferguson ME, Ha CM, Hall M, Herselman L, Ikpan A, Kafiriti E, Kanju E, Kapinga F, Karugu A, Kawuki R, Kimata B, Kimurto R, Kulakow P, Kulembeka H, Kusolwa P, Lyons JB, et al. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations. G3-Genes Genom Genet. 2015;5:133–144. doi:10.1534/g3.114.015008.
  • Hosmani PS, Flores-Gonzalez M, van de Geest H, Maumus F, Bakker LV, Schijlen E, Jan Cordewener JH, Sanchez-Perez G, Peters S, Fei Z, Giovannoni JJ, Mueller LA, Saha S . An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. bioRxiv. 2019:767764.https://doi.org/10.1101/767764
  • Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao HN, Vaillancourt B, Ou S, Jiang J, Buell CR. Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience. 2020;9. doi:10.1093/gigascience/giaa100.
  • Wang ZW, Hobson N, Galindo L, Zhu SL, Shi DH, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72:461–473. doi:10.1111/j.1365-313X.2012.05093.x.
  • Zhu T, Liang CZ, Meng ZG, Sun GQ, Meng ZH, Guo SD, Zhang R . CottonFGD: an integrated functional genomics database for cotton. Bmc Plant Biol. 2017;17(1):17. doi:10.1186/s12870-017-0972-z.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura KMEGAX. Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi:10.1093/molbev/msy096.
  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao GJB. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics (Oxford, England). 2015;31:1296–1297. doi:10.1093/bioinformatics/btu817.
  • Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34:W369–W73. doi:10.1093/nar/gkl198.
  • Marchler-Bauer A, Bo Y, Han LY, He JE, Lanczycki CJ, Lu SN, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D3. doi:10.1093/nar/gkw1129.
  • Lu SN, Wang JY, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D8. doi:10.1093/nar/gkz991.
  • Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, Lee T, Jin HZ, Marler B, Guo H, Kissinger JC, Paterson AH . MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res . 2012;40:e49. doi:10.1093/nar/gkr1293.
  • Hu Y, Chen JD, Fang L, Zhang ZY, Ma W, Niu YC, Ju L, Deng J, Zhao T, Lian J, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51:739-+. doi:10.1038/s41588-019-0371-5.
  • Feng HJ, Li C, Zhou JL, Yuan Y, Feng ZL, Shi YQ, Zhao L, Zhang Y, Wei F, Zhu H, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae. Int J Biol Macromol. 2021;167:633–643. doi:10.1016/j.ijbiomac.2020.11.191.
  • Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Gene Dev. 2010;24:159. 2012; 26:2118. doi:10.1101/gad.1857410.
  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ, et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell. 2005;16:260–269. doi:10.1091/mbc.e04-09-0791.
  • He ZQ, Huang TT, Ao K, Yan XF, Huang Y. Sumoylation, phosphorylation, and acetylation fine-tune the turnover of plant immunity components mediated by ubiquitination. Front Plant Sci. 2017;8:8. doi:10.3389/fpls.2017.00008.
  • Zhou JG, Wang XY, He YX, Sang T, Wang PC, Dai SJ, Zhang S, Meng X. Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. Plant Cell. 2020;32:2621–2638. doi:10.1105/tpc.19.00971.
  • Li Y, Liu K, Tong G, Xi C, Liu J, Zhao H, Wang Y, Ren D, Han S . MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. J Exp Bot. 2021;73:413–428. doi:10.1093/jxb/erab415.
  • Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol. 2004;24:6011–6020. doi:10.1128/MCB.24.13.6011-6020.2004.
  • Cleary J, Sitwala KV, Khodadoust MS, Kwok RPS, Mor-Vaknin N, Cebrat M, Cole PA, Markovitz DM . p300/CBP-associated factor drives DEK into interchromatin granule clusters. J Biol Chem. 2005;280:31760–31767. doi:10.1074/jbc.M500884200.
  • Babaei-Jadidi R, Li NN, Saadeddin A, Spencer-Dene B, Jandke A, Muhammad B, Ibrahim EE, Muraleedharan R, Abuzinadah M, Davis H, et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med. 2011;208:295–312. doi:10.1084/jem.20100830.
  • Wang S, Wu X, Liu CH, Shan JY, Guo HS. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. Plos Pathog. 2020;16:e1008481. doi:10.1371/journal.ppat.1008481.
  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact. 2011;24:183–193. doi:10.1094/MPMI-07-10-0149.
  • Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann Bot. 2015;115:1053–1074. doi:10.1093/aob/mcv046.
  • Mwaba I, Rey MEC. Nitric oxide associated protein 1 is associated with chloroplast perturbation and disease symptoms in Nicotiana benthamiana infected with South African cassava mosaic virus. Virus Res. 2017;238:75–83. doi:10.1016/j.virusres.2017.05.022.
  • Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. P Natl Acad Sci USA. 1998;95:10328–10333. doi:10.1073/pnas.95.17.10328.
  • Pontier D, Tronchet M, Rogowsky P, Lam E, Roby D. Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. Mol Plant Microbe Interact. 1998;11:544–554. doi:10.1094/MPMI.1998.11.6.544.
  • Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T. Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf- and flower-senescence. Plant Mol Biol. 2004;54:613–622. doi:10.1023/B:PLAN.0000038276.95539.39.
  • Appel HM. Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol. 1993;19:1521–1552. doi:10.1007/BF00984895.
  • Mandal S, Mitra A. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol. 2007;71:201–209. doi:10.1016/j.pmpp.2008.02.003.
  • Palmer CV, McGinty ES, Cummings DJ, Smith SM, Bartels E, Mydlarz LD. Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. J Exp Biol. 2011;214:4240–4249. doi:10.1242/jeb.061267.
  • Brestovitsky A, Ezer D, Waidmann S, Maslen SL, Balcerowicz M, Cortijo S, Charoensawan V, Martinho C, Rhodes D, Jonak C, Wigge PA . DEK influences the trade-off between growth and arrest via H2A. Z-nucleosomes in Arabidopsis. bioRxiv 2019:829226.