1,247
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Composition and characteristics of soil microbial communities in cotton fields with different incidences of Verticillium wilt

, , , , , , & show all
Article: 2034271 | Received 31 Dec 2021, Accepted 18 Jan 2022, Published online: 17 Feb 2022

References

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol. 2009;47(1):1–10. doi:10.1146/annurev-phyto-080508-081748.
  • Francisco JLE, Jesús MB. Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil. 2011;344:1–50. doi:10.1007/s11104-010-0629-2.
  • Jing R, Li HY, Hu XP, Shang WJ, Shen RQ, Guo CJ, Guo QY, Subbarao KV. Verticillium Wilt Caused by Verticillium dahliae and V. nonalfalfae in Potato in Northern China. Plant Dis. 2018;102(10):1958–1964. doi:10.1094/PDIS-01-18-0162-RE.
  • Zhang YZ, Zhang G J, Zhang G J, Yu Y, Zhou H, Chen W, Zhao J, Zhao J. The Colonization Process of Sunflower by a Green Fluorescent Protein-Tagged Isolate of Verticillium dahliae and its Seed Transmission. Plant Dis. 2018;102(9):1772–1778. doi:10.1094/PDIS-01-18-0074-RE.
  • Wu B, Subbarao KV. A model for multiseasonal spread of Verticillium wilt of lettuce. Phytopathology. 2014;104(9):908–917. doi:10.1094/PHYTO-12-13-0333-R.
  • Wu L, Du G, Bao R, Li Z, Gong Y, Liu F. De novo assembly and discovery of genes involved in the response of Solanum sisymbriifolium to Verticillium dahliae. Physiol Mol Biol Pla. 2019;25(4):1009–1027. doi:10.1007/s12298-019-00666-4.
  • Wei F, Feng HJ, Zhang DZ, Feng ZL, Zhao LH, Zhang YL, Deakin G, Peng J, Zhu HQ, Xu XM. Composition of rhizosphere microbial communities associated with healthy and Verticillium wilt diseased cotton plants. Front Microbiol. 2021:12. doi:10.3389/fmicb.2021.618169.
  • Berendsen RL, Pieterse CMJ, Pahm B. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17(8):478–486. doi:10.1016/j.tplants.2012.04.001.
  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota. Science. 2004;304(5677):1629–1633. doi:10.1126/science.1094875.
  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth promoting rhizobacteria on nutrient acquisition process. Biol Fert Soils. 2015;51(4):403–415. doi:10.1007/s00374-015-0996-1.
  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Pahm B, et al. Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science. 2011;332(6033):1097–1100. doi:10.1126/science.1203980.
  • Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25–41. doi:10.1016/j.tplants.2017.09.003.
  • Emilia HS, Ma HK, Perez Jaramillo JE, Pineda AM, Bezemer TM. Structure and ecological function of the soil microbiome affecting plant-soil feedbacks in the presence of a soil-borne pathogen. Environ Microbiol. 2020;22(2):660–676. doi:10.1111/1462-2920.14882.
  • Wei F, Zhao LH, Xu XM, Feng HJ, Shi YQ, Deakin G, Feng ZL, Zhu HQ. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions. Frontiers in Plant Science. 2019:10. doi:10.3389/fpls.2019.01659.
  • Liu HY, Wang W, Zhang RF, Raxida A, Yao J. Fungal community structure of cotton-field soil under different incidences of Cotton Verticillium wilt. Scientia Agricultura Sinica. 2019;52:455–465.
  • Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6. doi:10.1186/2049-2618-2-6.
  • Karlsson I, Friberg H, Steinberg C, Persson P. Fungicide effects on fungal community composition in the wheat phyllosphere. PloS one. 2014;9(11):111786. doi:10.1371/journal.pone.0111786.
  • Xiong W, Zhao Q, Zhao J, Xun W, Li R, Zhang R, Wu H, Shen Q. Diferent continuous cropping spans signifcantly afect microbial community membership and structure in a Vanilla-grown soil as revealed by deep pyrosequencing. Microb ecol. 2015;70(1):209–218. doi:10.1007/s00248-014-0516-0.
  • Bolyen E, Rideout JR, Dillon MR, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Asnicar F, Bai Y, Bisanz JE, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9.
  • Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005.
  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, et al. Plant-soil feedbacks: the past, the present and future challenges. J Ecol. 2013;101(2):265–276. doi:10.1111/1365-2745.12054.
  • Chialva M, Salvioli Di Fossalunga A, Daghino S, Ghignone S, Bagnaresi P, Chiapello M, Novero M, Spadaro D, Perotto S, Bonfante P. Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol. 2018;220(4):1296–1308. doi:10.1111/nph.15014.
  • Epelde L, Becerril JM, Alkorta I, Garbisu C. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parametersxs. Int. J. Phytoremediation. 2014;16(10):971–981. doi:10.1080/15226514.2013.810578.
  • Ferris H, Tuomisto H. Unearthing the role of biological diversity in soil health. Soil Biol. Biochem. 2015;85:101–109. doi:10.1016/j.soilbio.2015.02.037.
  • van Bruggen AHC, Sharma K, Kaku E, Karfopoulos S, Zelenev VV, Blok WJ. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Applied Soil Ecology. 2015;86:192–201. doi:10.1016/j.apsoil.2014.10.014.
  • Garbeva P, van Veen JA, van Elsas JD. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004;42(1):243–270. doi:10.1146/annurev.phyto.42.012604.135455.
  • Mallon CA, van Elsas JD, Salles JF. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23(11):719–729. doi:10.1016/j.tim.2015.07.013.
  • Xi H, Shen JL, Qu Z, Yang DY, Liu SM, Nie XH, Zhu LF. Effects of Long-term Cotton Continuous Cropping on Soil Microbiome. Sci. Rep. 2019;9(1):18297. doi:10.1038/s41598-019-54771-1.
  • Zhang Y, Du BH, Jin Z, Li Z, Song H, Ding YQ. Analysis of bacterial communities in rhizosphere soil of healthy and diseased cotton (Gossypium sp.) at different plant growth stages. Plant Soil. 2011;339(1–2):447–455. doi:10.1007/s11104-010-0600-2.
  • Li JG, Ren G, Di Jia ZJ, Dong YH. Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant Soil. 2014;380(1–2):337–347. doi:10.1007/s11104-014-2097-6.
  • Köberl M, Dita M, Martinuz A, Staver C, Berg G. Members of gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 2017;7(1):1–9. doi:10.1038/srep45318. 2017
  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis. Plant Physiol. 2009;149(3):1579–1592. doi:10.1104/pp.108.130369.
  • Ali A, Mohanta TK, Asaf S, Rehman N, Al-Housni S, Al-Harrasi A, Khan ALL, Al-Rawahi A. Biotransformation of benzoin by Sphingomonas sp. LK11 and ameliorative effects on growth of Cucumis sativus. Arch Microbiol. 2019;201(5):591–601. doi:10.1007/s00203-019-01623-1.
  • Hamedi J, Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol. 2015;42(2):157–171. doi:10.1007/s10295-014-1537-x.
  • Pereira SIA, Monteiro C, Vega AL, Castro PML. Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng. 2016;87:91–97. doi:10.1016/j.ecoleng.2015.11.033.
  • Zhang Y, Yang N, Zhao LH, Zhu HQ, Tang CM. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC Plant Biol. 2020;20(1):89. doi:10.1186/s12870-019-2221-0.
  • Zhang Y, Zhu HQ, Ye YH, Tang CM. Antifungal Activity of Chaetoviridin A from Chaetomium globosum CEF-082 Metabolites Against Verticillium dahliae in Cotton. Mol Plant Microbe In. 2021;34(7):758–769. doi:10.1094/MPMI-02-21-0032-R.
  • Zhao SS, Zhang YY, Yan W, Cao LL, Xiao Y, Ye YH. Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol. Lett. 2017;364:fnw287. doi:10.1093/femsle/fnw287.