1,747
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

XopZ and ORP1C cooperate to regulate the virulence of Xanthomonas oryzae pv. oryzae on Nipponbare

ORCID Icon, , , , , & show all
Article: 2035126 | Received 29 Sep 2021, Accepted 24 Jan 2022, Published online: 19 Feb 2022

References

  • Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–7. PMID:17108957. doi:10.1038/nature05286
  • Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 2009;60:379–406. PMID:19400727. doi:10.1146/annurev.arplant.57.032905.105346.
  • Zipfel C. Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol. 2009;12:414–420. PMID:19608450. doi:10.1016/j.pbi.2009.06.003.
  • Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol. 2003;54:23–61. PMID:14502984. doi:10.1146/annurev.arplant.54.031902.135035.
  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E. The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot. 2008;59:501–520. PMID:18079135. doi:10.1093/jxb/erm239.
  • Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. 2021;592:105–109. PMID:33692546. doi:10.1038/s41586-021-03316-6.
  • Ngou BPM, Ahn HK, Ding P, Jones JDG. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592:110–115. PMID:33692545. doi:10.1038/s41586-021-03315-7.
  • Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev. 2016;40:894–937. PMID:28201715. doi:10.1093/femsre/fuw026.
  • Khan M, Seto D, Subramaniam R, Desveaux D. Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant J. 2018;93:651–663. PMID:29160935. doi:10.1111/tpj.13780.
  • Niño-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol. 2006;7(5):303–324. PMID:20507449. doi:10.1111/j.1364-3703.2006.00344.x
  • Ji H, Dong H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Mol Plant Pathol. 2015;16(7):762–773. PMID:25469869. doi:10.1111/mpp.12223
  • Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, and Tsuge S. Identification of novel type III secretion effectors in Xanthomonas oryzae pv.oryzae. Mol Plant Microbe Interact. 2009;22:96–106. PMID:19061406. doi:10.1094/MPMI-22-1-0096.
  • White FF, Potnis N, Jones JB, Koebnik R. The type III effectors of Xanthomonas. Mol Plant Pathol. 2009;10:749–766. PMID:19849782. doi:10.1111/j.1364-3703.2009.00590.x.
  • Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 2007;318:648–651. PMID:17962565. doi:10.1126/science.1144956.
  • White FF, Yang B. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol. 2009;150:1677–1686. PMID:19458115. doi:10.1104/pp.109.139360.
  • Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA. 2006;103:10503–10508. PMID:16798873. doi:10.1073/pnas.0604088103.
  • Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, et al. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell. 2014;26:497–515. PMID:24488961. doi:10.1105/tpc.113.119255.
  • Song C, and Yang B. Mutagenesis of 18 type III effectors reveals virulence function of XopZ(PXO99) in Xanthomonas oryzae pv.oryzae. Mol Plant Microbe Interact. 2010;23:893–902. PMID:20521952. doi:10.1094/MPMI-23-7-0893.
  • Ji H, Liu D, Zhang Z, Sun J, Han B, Li Z. A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice. Plant J. 2020;104:1054–1072. PMID:32881160. doi:10.1111/tpj.14980.
  • Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H. XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana. Mol Plant Microbe Interact. 2012;25:505–514. PMID:22204644. doi:10.1094/MPMI-06-11-0167.
  • Wang S, Sun J, Fan F, Tan Z, Zou Y, Lu D. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure. Sci China Life Sci. 2016;59:897–905. PMID:27520828. doi:10.1007/s11427-016-5106-6.
  • Yamaguchi K, Nakamura Y, Ishikawa K, Yoshimura Y, Tsuge S, Kawasaki T. Suppression of rice immunity by Xanthomonas oryzae type III effector Xoo2875. Biosci Biotechnol Biochem. 2013;77:796–801. PMID:23563550. doi:10.1271/bbb.120929.
  • Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, et al. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe. 2013;13:347–357. PMID:23498959. doi:10.1016/j.chom.2013.02.007.
  • Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K, Tsuge S, Kojima C, Kawasaki T. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat Commun. 2014;5:5430. PMID:25388636. doi:10.1038/ncomms6430.
  • Cheong H, Kim CY, Jeon JS, Lee BM, Sun Moon J, Hwang I. Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PLoS One. 2013;8:e73346. PMID:24019919. doi:10.1371/journal.pone.0073346.
  • Sinha D, Gupta MK, Patel HK, Ranjan A, and Sonti RV. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv.oryzae. PLoS One. 2013;8:e75867. PMID:24086651. doi:10.1371/journal.pone.0075867.
  • Long J, Song C, Yan F, Zhou J, Zhou H, Yang B. Non-TAL effectors from xanthomonas oryzae pv. oryzae suppress peptidoglycan-triggered MAPK activation in rice. Front Plant Sci. 2018;9:1857. PMID:30631333. doi:10.3389/fpls.2018.01857.
  • Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics. 2008;9:204. PMID:18452608. doi:10.1186/1471-2164-9-204.
  • Umate P. Oxysterol binding proteins (OSBPs) and their encoding genes in Arabidopsis and rice. Steroids. 2011;76:524–529. PMID:21281657. doi:10.1016/j.steroids.2011.01.007.
  • Ridgway ND. Oxysterol-binding proteins. Subcell Biochem. 2010;51:159–182. PMID:20213544. doi:10.1007/978-90-481-8622-8_6.
  • Olkkonen VM, Li S. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res. 2013;52:529–538. PMID:23830809. doi:10.1016/j.plipres.2013.06.004.
  • Raychaudhuri S, Prinz WA. The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol. 2010;26:157–177. PMID:19575662. doi:10.1146/annurev.cellbio.042308.113334.
  • Tong J, Manik MK, Yang H, Im YJ. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochim Biophys Acta. 2016;1861:928–939. PMID:26784528. doi:10.1016/j.bbalip.2016.01.008.
  • Pizarro-Cerdá J, Kühbacher A, Cossart P. Phosphoinositides and host-pathogen interactions. Biochim Biophys Acta. 2015;1851:911–918. PMID:25241942. doi:10.1016/j.bbalip.2014.09.011.
  • Toledo A, Benach JL. Hijacking and use of host lipids by intracellular pathogens. Microbiol Spectr. 2015;3 PMID:27337282. doi:10.1128/microbiolspec.VMBF-0001-2014.
  • Lang R, Mattner J. The role of lipids in host microbe interactions. Front Biosci. 2017;22:1581–1598. PMID:28410133. doi:10.2741/4559.
  • Walpole GFW, Grinstein S, Westman J. The role of lipids in host-pathogen interactions. IUBMB Life. 2018;70:384–392. PMID:29573124. doi:10.1002/iub.1737.
  • Allen PE, Martinez JJ. Modulation of host lipid pathways by pathogenic intracellular bacteria. Pathogens. 2020;9:614. PMID:32731350. doi:10.3390/pathogens9080614.
  • Shah J. Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol. 2005;43:229–260. PMID:16078884. doi:10.1146/annurev.phyto.43.040204.135951.
  • Siebers M, Brands M, Wewer V, Duan Y, Hölzl G, Dörmann P. Lipids in plant-microbe interactions. Biochim Biophys Acta. 2016;1861:1379–1395. PMID:26928590. doi:10.1016/j.bbalip.2016.02.021.
  • Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant Microbe Interact. 2013;26:1115–1122. PMID:23745678. doi:10.1094/MPMI-02-13-0050-CR.
  • Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994;6:271–282. PMID:7920717. doi:10.1046/j.1365-313x.1994.6020271.x.
  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell. 2012;24(11):4748–4762. PMID:23204406. doi:10.1105/tpc.112.105429.