1,861
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings (Brassica napus)

, , , , , , , , & show all
Article: 2081419 | Received 03 Apr 2022, Accepted 20 May 2022, Published online: 27 May 2022

References

  • Ben Salah I, Mahmoudi H, Gandour M, Zribi F, Gruber M, Abdelly C. Changes in growth and oxidative response of leaves and nodules in Medicago ciliaris during salt stress recovery. Biologia. 2018;73:1043–12. doi:10.2478/s11756-018-0109-3.
  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gomez C, Mattson N, Nasim W, Garcia-Sanchez F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy-basel. 2020;10:938. doi:10.3390/agronomy10070938.
  • Zhao CZ, Zhang H, Song CP, Zhu JK, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. The Innovation. 2020;1(1):100017. doi:10.1016/j.xinn.2020.100017.
  • Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt stress in brassica: effects, tolerance mechanisms, and management. J Plant Growth Regul. 2021;1–15. doi:10.1007/s00344-021-10338-x.
  • Rahman M, Rahman K, Sathi KS, Alam MM, Nahar K, Fujita M, Hasanuzzaman M. Supplemental selenium and boron mitigate salt-induced oxidative damages in glycine max L. Plants-basel. 2021;10:2224. doi:10.3390/plants10102224.
  • Quan XY, Liang XL, Li HM, Xie CJ, He WX, Qin YX. Identification and characterization of wheat germplasm for salt tolerance. Plants-basel. 2021;10:2. doi:10.3390/plants10020268.
  • Du BH, Chen NY, Song LL, Wang D, Cai HS, Yao L, Li XT, Guo CH. Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. Plant Cell Rep. 2021;40:1907–1922. doi:10.1007/s00299-021-02757-7.
  • Muhammad Z, Lu MQ, Shafaque S, Paul H, Wu FB. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy. 2020;10(1):127. doi:10.3390/agronomy10010127.
  • Wang D, Lu X, Chen X, Wang S, Ye W. Temporal salt stress-induced transcriptome alterations and regulatory mechanisms revealed by PacBio long-reads RNA sequencing in Gossypium hirsutum. BMC Genomics. 2020;21(1):838. doi:10.1186/s12864-020-07260-z.
  • Liu CT, Mao BG, Yuan DY, Chu CC, Duan MJ. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J. 2022;10:13–25. doi:10.1016/j.cj.2021.02.010.
  • Sun WJ, Jiang XH, Fu YY, Shen XJ, Gao Y, Wang XP. The effects of salt stress on chlorophyll fluorescence of cotton seedling leaves. J Irrig Drain. 2021;40(7):23–28+121. doi:10.13522/j.cnki.ggps.2020480.
  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci. 2016;7:1787. doi:10.3389/fpls.2016.01787.
  • Ancin M, Larraya L, Florez-Sarasa I, Benard C, Fernandez-San Millan A, Veramendi J, Gibon Y, Fernie AR, Aranjuelo I, Farran I. Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. J Exp Bot. 2021;72:4949–4964. doi:10.1093/jxb/erab193.
  • Sikder RK, Wang XR, Zhang HS, Gui HP, Dong Q, Jin DS, Song MZ. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants-basel. 2020;9:4. doi:10.3390/plants9040450.
  • Stefaniak J, Lata B. Actinidia arguta leaf as a donor of potentially healthful bioactive compounds: implications of cultivar, time of sampling and soil N level. Molecules. 2021;26:3871. doi:10.3390/molecules26133871.
  • Tofanello VR, Andrade LM, Flores-Borges DNA, Kiyota E, Mayer JLS, Creste S, Machado EC, Yin XY, Struik PC, Ribeiro RV. Role of bundle sheath conductance in sustaining photosynthesis competence in sugarcane plants under nitrogen deficiency. Photosynth Res. 2021;149:275–287. doi:10.1007/s11120-021-00848-w.
  • Ahanger MA, Qin C, Begum N, Qi M, Dong XX, El-Esawi E, El-Sheikh MA, Alatar AA, Zhang L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol. 2019;19(1):449–460. doi:10.1186/s12870-019-2085-3.
  • Huang GJ, Zhang QQ, Wei XH, Peng SB, Li Y. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Front Plant Sci. 2017;8:945. doi:10.3389/fpls.2017.00945.
  • Alla MMN, Hassan NM. Nitrogen alleviates NaCl toxicity in maize seedlings by regulating photosynthetic activity and ROS homeostasis. Acta Physiologiae Plantarum. 2020;42:6. doi:10.1007/s11738-020-03080-6.
  • Gao ZQ, Zhang JY, Zhang J, Zhang WX, Zheng LL, Borjigin T, Wang YC. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. Plant Physiol Biochem. 2022;173:46–58. doi:10.1016/j.plaphy.2022.01.017.
  • Zhu QQ, Liu GH, Xu YM, Yang JY, Zhang YH. Effect of water and nitrogen on the yield and quality of forage rape grown after wheat in south Xinjiang. Chin J Eco-Agric. 2019;27:1033–1041.
  • Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song YH. Targeting salt stress coping mechanisms for stress tolerance in Brassica: a research perspective. Plant Physiol Biochem. 2021;158:53–64. doi:10.1016/j.plaphy.2020.11.044.
  • Wei YL, Chen HZ, Wang L, Zhao Q, Wang D, Zhang TG. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal Behav. 2021;17:1. doi:10.1080/15592324.2021.2013638.
  • Li CJ, Han YY, Hao JH, Qin XX, Liu CJ, Fan SX. Effects of exogenous spermidine on antioxidants and glyoxalase system of lettuce seedlings under high temperature. Plant Signal Behav. 2020;15:12. doi:10.1080/15592324.2020.1824697.
  • Li B, Wang WT. Salicylic acid induces tolerance of Vitisripariax V. labrusca to chilling stress by altered photosynthetic, antioxidant mechanisms and expression of cold stress responsive genes. Plant Signal Behav. 2021;16:11. doi:10.1080/15592324.2021.1973711.
  • Guo KW, Xu ZS, Huo YZ, Sun Q, Wang Y, Che YH, Wang JC, Li W, Zhang HH. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signal Behav. 2020;15:12. doi:10.1080/15592324.2020.1832373.
  • Dixit G, Srivastava A, Rai KM, Dubey RS, Srivastava R, Verma PC. Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties toward chewing pests. Plant Signal Behav. 2020;15:5. doi:10.1080/15592324.2020.1747689.
  • Zhao SS, Zhang QK, Liu MY, Zhou HP, Ma CL, Wang PP. Regulation of plant responses to salt stress. Int J Mol Sci. 2021;22:4609. doi:10.3390/ijms22094609.
  • Singh M, Singh VP, Prasad SM. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol Biochem. 2016;109:72–83. doi:10.1016/j.plaphy.2016.08.021.
  • Dvorak P, Krasylenko Y, Zeiner A, Samaj J, Takac T. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci. 2021;11:618835. doi:10.3389/fpls.2020.618835.
  • He WJ, Yan K, Zhang Y, Bian LX, Mei HM, Han GX. Contrasting photosynthesis, photoinhibition and oxidative damage in honeysuckle (Lonicera japonica Thunb.) under iso-osmotic salt and drought stresses. Environ Exp Bot. 2021;182:104313. doi:10.1016/j.envexpbot.2020.104313.
  • Mansour MMF, Emam MM, Salama KHA, Morsy AA. Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. Planta. 2021;254:24. doi:10.1007/s00425-021-03671-8.
  • Zhao YG, Zhang FH, Mickan B, Wang D, Wang WC. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat. Plant Cell Rep. 2021;41:95–118. doi:10.1007/s00299-021-02788-0.
  • Selote DS, Khanna-Chopra R. Drought acclimation confers oxidative stress tolerance by inducing coordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant. 2010;127:494–506. doi:10.1111/j.1399-3054.2006.00678.x.
  • Yang L, Li XH, Hu B, Liu M, Liu WB, Li JX, Zhang J, Wang ZF. Physiological response of nitrogen fertilization to wheat seedling under mild salt stress. Soil and Fert Sci China. 2020;3:16–22. doi:10.11838/sfsc.1673-6257.19194.
  • Yao YA, Sun YF, Feng Q, Zhang X, Gao YF, Ou YB, Yang F, Xie W, Dios VR, Ma JB. Acclimation to nitrogen x salt stress in populus bolleana mediated by potassium/sodium balance. Ind Crops Prod. 2021;170:113789. doi:10.1016/j.indcrop.2021.113789.
  • Cruz C, Lips SH, Martins-Loucao MA. The effect of nitrogen source on photosynthesis of carob at high CO2 concentrations. Physiol Plant. 2010;89:552–556. doi:10.1111/j.1399-3054.1993.tb05212.x.
  • Els K, Darin P, Jaco V, Ende DV, Cuypers WA. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. doi:10.1111/pce.12061.
  • Hao JJ, Kang ZL. plant physiology. China Beijing: Chemical Industry Press; 2005.
  • Singh M, Singh VP, Prasad SM. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol Biochem. 2016;109:72–83. doi:10.1016/j.plaphy.2016.08.021.
  • Anita Z, Stefania A, Sabrina Z, Youry P, Katia G, Paola T, Zeno V. Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line. J Integr Plant Biol. 2014;56(11):1080. 1094. 10.1111/jipb.12214.
  • Ozcubukcu S, Ergun N, Ilhan E. Waterlogging and nitric oxide induce gene expression and increase antioxidant enzyme activity in wheat (Triticum aestivum L.). Acta Biolologica Hung. 2014;65:47–60. doi:10.1556/ABiol.65.2014.1.5.
  • Ding SH, Chen S, Lu CM. Research progress on functions of glutathione reductase in chloroplasts of plants. Plant Physiol J. 2016;52:1703–1709. doi:10.13592/j.cnki.ppj.2016.1005.
  • Li H, Liu H, Wang Y, Teng RM, Liu JY, Lin SJ, Zhuang J. Cytosolic ascorbate peroxidase 1 modulates ascorbic acid metabolism through cooperating with nitrogen regulatory protein P-II in tea plant under nitrogen deficiency stress. Genomics. 2020;112:3497–3503. doi:10.1016/j.ygeno.2020.06.025.
  • Ventimiglia L, Mutus B. The physiological implications of S-Nitrosoglutathione reductase (GSNOR) activity mediating NO signalling in plant root structures. Antioxidants. 2020;9:1206. doi:10.3390/antiox9121206.
  • Tewari RK, Yadav N, Gupta R, Kumar P. Oxidative stress under macronutrient deficiency in plants. J Soil Sci Plant Nutr. 2021;21:832–859. doi:10.1007/s42729-020-00405-9.
  • Shariati S, Zare D, Mirdamadi S. Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora. Food Sci Biotechnol. 2019;28:469–479. doi:10.1007/s10068-018-0484-0.
  • Tewari RK, Yadav N, Gupta R, Kumar P. Oxidative stress under macronutrient deficiency in plants. J Soil Sci Plant Nutr. 2020;21:832–859. doi:10.1007/s42729-020-00405-9.
  • Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol. 2021;24:227–239. doi:10.1111/plb.13363.
  • Song LH, Ren XY. Analytical chemistry technology. Chongqing University Press. 2016;1:107–108.
  • Heidari M, Mesri F. Salinity effects on compatible solutes, antioxidants enzymes and ion content in three wheat cultivars. Pak J Biol Sci. 2008. doi:10.3923/pjbs.2008.1385.1389.
  • Greer DH. Photosynthetic light responses of apple (Malus domestica) leaves in relation to leaf temperature, CO2 and leaf nitrogen on trees grown in orchard conditions. Funct Plant Biol. 2018;45:1149–1161. doi:10.1071/FP18093.
  • Pilar CMM, Susan MM, Papuga SA, Thorp KR, Alonso L, Moreno J, Ponce-Campos G, Rascher U, Wang G. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments. J Exp Bot. 2016;1:275–286. doi:10.1093/jxb/erv456.
  • Tewari RK, Kumar P, Sharma PN. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J Integr Plant Biol. 2010;49:313–322. doi:10.1111/j.1744-7909.2007.00358.x.
  • Lin JX, Wang YN, Sun SG, Mu CS, Yan XF. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ. 2017;576:234–241. doi:10.1016/j.scitotenv.2016.10.091.
  • Nguyen TT, Uthairatanakij A, Srilaong V, Laohakunjit N, Jitareerat P. Impact of electron beam irradiation on the chlorophyll degradation and antioxidant capacity of mango fruit. Appl Biol Chem. 2021;64. doi:10.1186/s13765-021-00592-8.
  • Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem. 2014;78:1457–1470. doi:10.1080/09168451.2014.942254.
  • Saleem S, Mushtaq UN, Shah WH, Rasool A, Rehman UI. Morpho-Physiological, biochemical and molecular adaptation of millets to abiotic stresses: a review. Phyton. 2021;90:1363–1385. doi:10.32604/phyton.2021.014826.
  • Weng XY, Zheng CJ, Xu HX, Sun JY. Characteristics of photosynthesis and functions of the water-water cycle in rice (Oryza sativa) leaves in response to potassium deficiency. Physiol Plantarum. 2010;131:614–621. doi:10.1111/j.1399-3054.2007.00978.x.
  • Balkos KD, Britto DT, Kronzucker HJ. Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant Cell Environ. 2010;33:23–34. doi:10.1111/j.1365-3040.2009.02046.x.
  • Li M, Svoboda V, Davis G, Kramer D, Kunz HH, Kirchhoff H. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nat Plants. 2021;7:979–988. doi:10.1038/s41477-021-00947-5.