944
Views
0
CrossRef citations to date
0
Altmetric
Article

Phospholipase C is a novel regulator at the early stages of microspore embryogenesis in Nicotiana tabacum

, , , , , , & show all
Article: 2094618 | Received 11 Jun 2022, Accepted 22 Jun 2022, Published online: 04 Jul 2022

References

  • Soriano M, Li H, Boutilier K. Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod. 2013;26(3):181–7. doi:10.1007/s00497-013-0226-7.
  • Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J Exp Bot. 2019;70(11):2965–2978. doi:10.1093/jxb/ery464.
  • Radoeva T, Weijers D. A roadmap to embryo identity in plants. Trends Plant Sci. 2014;19(11):709–716. doi:10.1016/j.tplants.2014.06.009.
  • Islam SS, Tuteja N. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci. 2012;182:134–144. doi:10.1016/j.plantsci.2011.10.001.
  • Li H, Soriano M, Cordewener J, Muiño JM, Riksen T, Fukuoka H, Angenent GC, Boutilier K. The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. Plant Cell. 2014;26(1):195–209. doi:10.1105/tpc.113.116491.
  • Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S. Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar “Svilena”. BMC Plant Biol. 2016;16(1):1–6. doi:10.1186/s12870-016-0782-8.
  • Tian H, Yao CY, Sun MX. High frequency conversion of microspore-derived embryos of Brassica napus cv. Topas by supplemental calcium and vitamins. Plant Cell Tissue Organ Cult. 2004;76(2):159–165. doi:10.1023/B:TICU.0000007292.10767.54.
  • Żur I, Dubas E, Krzewska M, Janowiak F. Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci. 2015;6:424. doi:10.3389/fpls.2015.00424.
  • Wang X. P LANT P HOSPHOLIPASES. Annu Rev Plant Biol. 2001;52(1):211–231. doi:10.1146/annurev.arplant.52.1.211.
  • Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling. Plant Signal Behav. 2011;6(1):13–18. doi:10.4161/psb.6.1.14037.
  • Wang L, Zhu X, Liu J, Chu X, Jiao J, Liang Y. Involvement of phospholipases C and D in the defence responses of riboflavin-treated tobacco cells. Protoplasma. 2013;250(2):441–449. doi:10.1007/s00709-012-0426-2.
  • Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. 2002;130(2):999–1007. doi:10.1104/pp.006080.
  • Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res. 2022;5:101158. doi:10.1016/j.plipres.2022.101158.
  • Tuteja N, Sopory SK. Plant signaling in stress: g-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav. 2008;3(2):79–86. doi:10.4161/psb.3.2.5303.
  • Rupwate SD, Rajasekharan R. Plant phosphoinositide-specific phospholipase C: an insight. Plant Signal Behav. 2012;7(10):1281–1283. doi:10.4161/psb.21436.
  • Touraev A, Pfosser M, Vicente O, Heberle-Bors E. Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta. 1996;200(1):144–152. doi:10.1007/BF00196662.
  • Kyo M, Harada H. Control of the developmental pathway of tobacco pollen in vitro. Planta. 1986;168(4):427–432. doi:10.1007/BF00392260.
  • Touraev A, and Heberle-Bors E. Microspore embryogenesis and in vitro pollen maturation in tobacco. Plant Cell Culture Protocols. 1999;(111):281–291. doi:10.1385/1-59259-583-9:281.
  • Shi C, Luo P, Du YT, Chen H, Huang X, Cheng TH, Luo A, Li HJ, Yang WC, Zhao P, et al. Maternal control of suspensor programmed cell death via gibberellin signaling. Nat Commun. 2019;10(1):1–12. doi:10.1038/s41467-019-11476-3.