1,928
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Physiological and comparative transcriptome analysis of the response and adaptation mechanism of the photosynthetic function of mulberry (Morus alba L.) leaves to flooding stress

, , , , ORCID Icon &
Article: 2094619 | Received 08 Jun 2022, Accepted 22 Jun 2022, Published online: 04 Jul 2022

References

  • Ponting J, Kelly TJ, Verhoef A, Watts MJ, Sizmur T. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – a review. Sci Total Environ. 2020;754:142040. doi:10.1016/j.scitotenv.2020.142040.
  • Iqbal Z, Sarkhosh A, Balal RM, Gomez C, Shahid MA, Ilyas N, Khan N, Shahid MA. Silicon alleviate hypoxia stress by improving enzymatic and non-enzymatic antioxidants and regulating nutrient uptake in muscadine grape (Muscadinia rotundifolia Michx.). Front Plant Sci. 2021;11:618873. doi:10.3389/fpls.2020.618873.
  • Striker GG, Colmer TD. Flooding tolerance of forage legumes. J Exp Bot. 2017;68(8):1851–16. doi:10.1093/jxb/erw239.
  • Egal F. Review of the state of food security and nutrition in the world, 2019. World Nutr. 2019;10(3):95–97. doi:10.26596/wn.201910395-97.
  • Akhtar I, Nazir N. Effect of waterlogging and drought stress in plants. Int J Water Resour Environ Sci. 2013;2:34–40.
  • Osakabe Y, Osakabe K, Shinozaki K, Tran LP. Response of plants to water stress. Front Plant Sci. 2014;13:86.
  • Asif M, Kamran A. Plant breeding for water-limited environments. Crop Sci. 2011;51(6):2911. doi:10.2135/cropsci2011.12.0004br.
  • Gray SB, Brady SM. Plant developmental responses to climate change. Dev Biol. 2016;419(1):64–77. doi:10.1016/j.ydbio.2016.07.023.
  • Herzog M, Striker GG, Colmer TD, Pedersen O. Mechanisms of waterlogging tolerance in wheat – a review of root and shoot physiology. Plant Cell Environ. 2016;39(5):1068–1086. doi:10.1111/pce.12676.
  • Arguello MN, Mason RE, Roberts TL, Subramanian N, Acuna A, Addison CK, Lozada DN, Miller RG, Gbur E. Gbur E.Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield components. Field Crops Res. 2016;194:57–64. doi:10.1016/j.fcr.2016.04.040.
  • Zhang Y, Chen Y, Lu H, Kong X, Dai J, Li Z, Dong H. Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crops Res. 2016;194(1):83–93. doi:10.1016/j.fcr.2016.05.006.
  • Colmer TD, Voesenek LACJ. Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol. 2009;36(8):665–681. doi:10.1071/FP09144.
  • Liu B, Rennenberg H, Kreuzwieser J. Hypoxia affects nitrogen uptake and distribution in young Poplar (Populus×canescens) Trees. PLoS One. 2015;10(8):e0136579. doi:10.1371/journal.pone.0136579.
  • Lukic N, Trifkovic T, Kojic D, Kukavica B. Modulations of the antioxidants defence system in two maize hybrids during flooding stress. J Plant Res. 2021;134(2):237–248. doi:10.1007/s10265-021-01264-w.
  • Parolin P, Haase K, Waldhoff D, Rottenberger S, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Piedade MTF. Central Amazonian floodplain forests: tree adaptations in a pulsing system. Bot Rev. 2004;70(3):357–380. doi:10.1663/0006-8101(2004)070[0357:CAFFTA]2.0.CO;2.
  • Júnior UM, Goncalves JF, Strasser RJ, Fearnside P. Flooding of tropical forests in central Amazonia: what do the effects on the photosynthetic apparatus of trees tell us about species suitability for reforestation in extreme environments created by hydroelectric dams? Acta Physiologiae Plant. 2015;37:1–17.
  • Mancuso S, Shabala S. Waterlogging signalling and tolerance in plants. Waterlogging Signalling Tolerance in Plants. 2010.
  • Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, Veen H, Yeung E, Voesenek LACJ. Signal dynamics and interactions during flooding Stress. Plant Physiol. 2017;176(2):1106–1117. doi:10.1104/pp.17.01232.
  • Voesenek LACJ, Sasidharan R. Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biol. 2013;15(3):426–435. doi:10.1111/plb.12014.
  • Takeshi F, Blanca EB, Piyada J, Julian M. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci. 2019;10(22):340. doi:10.3389/fpls.2019.00340.
  • Yang F, Wang Y, Chan ZL. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the Three Gorges reservoir. PLoS One. 2014;9(9):e108725. doi:10.1371/journal.pone.0108725.
  • Liu Y, Willison JHM, Wan P, Xiong XZ, Ou Y, Huang XH, Wu JC, Zhou H, Xu Q, Chen GH, et al. Mulberry trees conserved soil and protected water quality in the riparian zone of the Three Gorges Reservoir, China. Environ Sci Pollut Res. 2016;23(6):5288–5295. doi:10.1007/s11356-015-5731-9.
  • Zhang JJ, Ren RR, Zhu JZ, Song C, Liu JF, Fu JQ, Hu HB, Wang JX, Li HM, Xu JJ. Preliminary experimentation on flooding resistance of mulberry trees along the water-fluctuation belt of the Three Gorges reservoir. Scientia Silvae Sinicae. 2012;73:7441–7445.
  • Rao LY, Li SY, Cui X. Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress. Sci Rep. 2021;11:13379. doi:10.1038/s41598-021-92782-z.
  • Setter TL, Ingram KT, Tuong TP. Environmental characterization requirements for strategic research in rice grown under adverse conditions of drought, flooding, or salinity. Rainfed Lowland Rice: Agric Res high-risk Environ. 1995;67:3–18.
  • Panda D, Sharma SG, Sarkar RK. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat Bot. 2008;88(2):127–133. doi:10.1016/j.aquabot.2007.08.012.
  • Huang S, Colmer TD, Millar AH. Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci. 2008;13(5):221–227. doi:10.1016/j.tplants.2008.02.007.
  • Medina CL, Cristina SM, Tucci MLS, Sousa CAF, Cuzzuol GRF, Joly CA. Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: morphophysiological and growth responses. Ann Bot. 2009;104(4):671–680. doi:10.1093/aob/mcp159.
  • Pezeshki SR. Wetland plant responses to soil flooding. Environ Exp Bot. 2001;46(3):299–312. doi:10.1016/S0098-8472(01)00107-1.
  • Ashraf M, Arfan M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol Plant. 2005;49(3):459–462. doi:10.1007/s10535-005-0029-2.
  • Elcan JM, Pezeshki SR. Effects of flooding on susceptibility of Taxodium distichum L. Seedlings Drought Photosynthetica. 2002;40(2):177–182. doi:10.1023/A:1021381204684.
  • Rengifo E, Tezara W, Herrera A. Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flood. Photosynthetica. 2005;43(2):203–210. doi:10.1007/s11099-005-0034-x.
  • Chen H, Qualls RG, Blank RR. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat Bot. 2005;82(4):250–268. doi:10.1016/j.aquabot.2005.02.013.
  • He L, Li Y, Li B, Du N, Guo S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biol. 2018;18(1):180. doi:10.1186/s12870-018-1393-3.
  • Barickman TC, Simpson CR, Sams CE. Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants. 2019;8(6):160. doi:10.3390/plants8060160.
  • Larré CF, Fermando JA, Marini P, Bacarin MA, Peters JA. Growth and chlorophyll a fluorescence in Erythrina crista-galli L. plants under flooding conditions. Acta Physiologiae Plant. 2013;35(5):1463–1471. doi:10.1007/s11738-012-1187-4.
  • Duarte CI, Martinazzo EG, Bacarin MA, Colares IG. Seed germination, growth and chlorophyll a fluorescence in young plants of Allophylus edulis in different periods of flooding. Acta Physiologiae Plant. 2020;42(5):80. doi:10.1007/s11738-020-03063-7.
  • Martinez-Acosta E, Lagunes-Espinoza LC, Castelan-Estrada M, Lara-Viveros F, Trejo C. Leaf gas exchange and growth of Capsicum annuum var. Glabriusculum under Conditions Flooding Water Deficit Photosynthetica. 2020;58:873–880.
  • Vincent E, Robert DLP, Adam A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian J Plant Physiol. 2010;22(2):131–142. doi:10.1590/S1677-04202010000200007.
  • Liu Y, Willison JHM. Prospects for cultivating white mulberry (Morus alba) in the drawdown zone of the Three Gorges Reservoir, China. Environ Sci Res. 2013;20(10):7142–7151. doi:10.1007/s11356-013-1896-2.
  • Sil SK, Ghosh PD, Ghosh MK. Physio-biochemical markers for selecting water logging tolerant mulberry genotypes. J Crop and Weed. 2011;7:59–62.
  • Sun YP, Wang FW, Wang N, Dong YY, Liu Q, Zhao L, Chen H, Liu WC, Yin HL, Zhang XM, et al. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. PLoS One. 2013;8(1):e53632. doi:10.1371/journal.pone.0053632.
  • Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci. 2019;20(23):5910. doi:10.3390/ijms20235910.
  • Porra RJ. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res. 2002;73(1–3):149–156. doi:10.1023/A:1020470224740.
  • Strasser BJ, Strasser RJ. Measuring fast fluorescence transients to address environmental questions. JIP-Test. 1995.
  • Oukarroum A, Goltsev V, Strasser RJ. Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. PLoS One. 2013;8(3):e59433. doi:10.1371/journal.pone.0059433.
  • Zhang HH, Zhong HX, Wang JF, Sui X, Xu N. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. Peer J. 2016;4:e2125.
  • Ezin V, Pena RDL, Ahanchede A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian J Plant Physiol. 2011;22(2):131–142. doi:10.1590/S1677-04202010000200007.
  • Anee TI, Nahar K, Rahman A, Mahmud JA, Hasanuzzaman M. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants. 2019;8(7):196. doi:10.3390/plants8070196.
  • Brzezowski P, Richter AS, Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochimica Et Biophys Acta-Bioenergetics. 2015;1847(9):968–985. doi:10.1016/j.bbabio.2015.05.007.
  • Koichi K, Tatsuru M. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front Plant Sci. 2016;7:1811. doi:10.3389/fpls.2016.01811.
  • Chen W, Yao QM, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang YQ, Prince SJ, Song L, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front Plant Sci. 2016;19:1044.
  • Zhang HH, Wang Y, Li X, He GQ, Che YH, Teng ZY, Shao JY, Xu N, Sun GY. Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicol Environ Saf. 2020;190:110164. doi:10.1016/j.ecoenv.2020.110164.
  • Edwards AL, Lee DW, Richards JH. Responses to a fluctuating environment: effects of water depth on growth and biomass allocation in Eleocharis cellulosa Torr. (Cyperaceae) Can J Bot. 2003;81(9):964–975. doi:10.1139/b03-091.
  • Salah A, Zhan M, Cao CG, Han YL, Ling L, Liu ZH, Li P, Ye M, Jiang Y. γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings. Sci Rep. 2019;9:484. doi:10.1038/s41598-018-36334-y.
  • Mahdavian M, Sarikhani H, Hadadinejad M, Dehestani A. Putrescine effect on physiological, morphological, and biochemical traits of Carrizo citrange and volkameriana rootstocks under flooding stress. International Journal of Fruit Science. 2019;25:164–177.
  • Balschun TC, Franke A, Sina C, Ellinghaus D, Mayr G, Albrecht M, Wittig M, Buchert E, Nikolaus S, Gieger C. Effects of postharvest ethanol vapor treatment on activities and gene expression of chlorophyll catabolic enzymes in broccoli florets. Postharvest Biol Technol. 2010;55(2):97–102. doi:10.1016/j.postharvbio.2009.08.010.
  • Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hortensteiner S. Pheophytin pheophorbide hydrolase (Pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell. 2009;21(3):767–785. doi:10.1105/tpc.108.064089.
  • Wüthrich KL, Bovet L, Hunziker PE, Donnison IS, Hörtensteiner S. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J. 2010;21(2):189–198. doi:10.1046/j.1365-313x.2000.00667.x.
  • Pruzinska A, Tanner G, Anders I, Roca M, Hoertensteiner S. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron–sulfur protein, encoded by the accelerated cell death 1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2003; 100( 25): 15259–15264.
  • Oberhuber M, Berghold J, Breuker K, Hortensteiner S, Krautler B. Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proceedings of the National Academy of Sciences of the United States of America, 2003; 100( 12): 6910–6915.
  • Wang Y, Yu YT, Zhang HB, Huo YZ, Liu XQ, Che YH, Wang JC, Sun GY, Zhang H. Zhang HH.The phytotoxicity of exposure to two polybrominated diphenyl ethers (BDE47 and BDE209) on photosynthesis and the response of the hormone signaling and ROS scavenging system in tobacco leaves. J Hazard Mater. 2021;426(15):128012. doi:10.1016/j.jhazmat.2021.128012.
  • Dekker JP, and Boekema EJ . Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Et Biophys. 2005;(1706):1–2, 12–39 .
  • Song T, Yang F, Das D, Chen M, Zhang J, Tian Y, Cheng C, Liu Y, Zhang J. Transcriptomic analysis of photosynthesis-related genes regulated by alternate wetting and drying irrigation in flag leaves of rice. Food Energy Secur. 2020;9:e221. doi:10.1002/fes3.221.
  • Horton P, Wentworth M, Ruban A. Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett. 2005;579(20):4201–4206. doi:10.1016/j.febslet.2005.07.003.
  • Masuda T, Polle JEW, Melis A. Biosynthesis and distribution of chlorophyll among the photosystems during recovery of the green alga dunaliella salina from irradiance stress. Plant Physiol. 2002;128(2):603–614. doi:10.1104/pp.010595.
  • Lee YH, Kim KS, Jang YS, Hwang JH, Lee DH, Choi IH. Global gene expression responses to waterlogging in leaves of rape seedlings. Plant Cell Rep. 2014;33:289–299. doi:10.1007/s00299-013-1529-8.
  • Zhang HH, Liu XQ, Zhang HB, Wang Y, Li T, Che YH, Wang JC, Guo DD, Sun GY, Li X. Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition in tobacco leaves by regulating cyclic electron flow and excess energy dissipation. Plant Physiol Biochem. 2021;167:831–839. doi:10.1016/j.plaphy.2021.09.016.
  • Wang Y, Wang JC, Guo DD, Zhang HB, Che YH, Li YY, Tian B, Wang ZH, Sun GY, Zhang HH. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiol Biochem. 2021;167:140–152. doi:10.1016/j.plaphy.2021.07.040.
  • Fang X, Wang K, Sun X, Wang Y, Zheng P, Shi F. Characteristics of chlorophyll fluorescence in ten garden shrub species under flooding stress. Biologia. 2022;77(2):339–350. doi:10.1007/s11756-021-00947-y.
  • Zeng N, Yang Z, Zhang Z, Hu L, Chen L. Comparative transcriptome combined with proteome analyses revealed key factors involved in Alfalfa (Medicago sativa) response to waterlogging stress. Int J Mol Sci. 2019;20(6):1359. doi:10.3390/ijms20061359.
  • Wang Y, Guo DD, Wang JC, Tian B, Li YY, Sun GY, Zhang HH. Exogenous melatonin alleviates NO2 damage in tobacco leaves by promoting antioxidant defense, modulating redox homeostasis, and signal transduction. J Hazard Mater. 2022;424:127265. doi:10.1016/j.jhazmat.2021.127265.
  • Zhang HH, Shi GL, Shao JY, Li X, Li MB, Meng L, Xu N, Sun GY. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotoxicol Environ Saf. 2019;184:109624. doi:10.1016/j.ecoenv.2019.109624.
  • Kreuzwieser J, Hauberg J, Howell KA, Calloll A, Rennenberg H, Millar AH, Whelan J. Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol. 2009;149(1):461–473. doi:10.1104/pp.108.125989.
  • Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 2012;160(4):1698. doi:10.1104/pp.112.208173.
  • Folzer H, Dat JF, Capelli N, Rieffel D, Badot PM. Response of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Tree Physiol. 2006;26(6):759–766. doi:10.1093/treephys/26.6.759.
  • Malik AI, Colmer TD, Lambers JT, Schortemeyer M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol. 2001;28:1121–1131.
  • Mediavilla S, Santiago H, Escudero A. Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species. Photosynthetica. 2002;40(4):553–559. doi:10.1023/A:1024399919107.
  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res. 2005;105(1–3):269–279. doi:10.1385/BTER:105:1-3:269.
  • Howard TP, Lloyd JC, Raines CA. Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase. J Exp Bot. 2011;62(11):3799. doi:10.1093/jxb/err057.
  • Whitney SM, Houtz RL, Alonso H. Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol. 2011;155(1):27–35. doi:10.1104/pp.110.164814.