2,987
Views
2
CrossRef citations to date
0
Altmetric
Review

ROS and calcium oscillations are required for polarized root hair growth

, , , , , & ORCID Icon show all
Article: 2106410 | Received 31 May 2022, Accepted 23 Jul 2022, Published online: 07 Aug 2022

References

  • Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. Arabidopsis Book/American Soc Plant Bio. 2014;12:e0172. doi:10.1199/tab.0172.
  • Cormack RGH. Investigations on the development of root hairs. New Phytol. 1935;34(1):30–6. doi:10.1111/j.1469-8137.1935.tb06826.x.
  • Bünning E. Über die Differenzierungsvorgänge in der Cruciferenwurzel. Planta. 1951;39(2):126–153. doi:10.1007/BF01910114.
  • Dolan L, Duckett CM, Grierson CS, Linstead PJ, Roberts K, Dean C, Poethig S, Roberts K. Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development. 1994;120(9):2465–2474. doi:10.1101/gad.8.18.2241.
  • Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol. 1994;166(2):740–754. doi:10.1006/dbio.1994.1352.
  • Pacheco JM, Ranocha P, Kasulin L, Fusari CM, Servi L, Aptekmann AA, Gabarain VB, Peralta JM, Borassi C, Marzol E, et al. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nat Commun. 2022;13(1):1–14. doi:10.1038/s41467-022-28833-4.
  • Mangano S, Denita-Juarez SP, Choi H-S, Estevez JM, Hwang Y, Ranocha P, Velasquez SM, Borassi C, Barberini ML, Aptekmann AA. Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci USA. 2017;114(20):5289–5294. doi:10.1073/pnas.1701536114.
  • Mangano S, Juárez SPD, Estevez JM. ROS regulation of polar growth in plant cells. Plant Physiol. 2016;171(3):1593–1605. doi:10.1104/pp.16.00191.
  • Tian W, Wang C, Gao Q, Li L, Luan S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat Plants. 2020;6(7):750–759. doi:10.1038/s41477-020-0667-6.
  • Zhang X, Köster P, Schlücking K, Balcerowicz D, Hashimoto K, Kuchitsu K, Vissenberg K, Kudla J. CBL1-CIPK26-mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Lett. 2018;592(15):2582–2593. doi:10.1002/1873-3468.13187.
  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119(1):71–84. doi:10.1242/dev.119.1.71.
  • Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks DM, Shimura Y, Okada K. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development. 2002;129(23):5409–5419. doi:10.1242/dev.00111.
  • Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog. CPC Sci. 1997;277(5329):1113–1116. doi:10.1126/science.277.5329.1113.
  • Masucci JD, Schiefelbein JW. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol. 1994;106(4):1335–1346. doi:10.1104/pp.106.4.1335.
  • Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development. 1996;122(4):1253–1260. doi:10.1242/dev.1224.1253.
  • Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J. 1996;10(3):393–402. doi:10.1046/j.1365-313X.1996.10030393.x.
  • Lin Q, Ohashi Y, Kato M, Tsuge T, Gu H, Qu L-J, Aoyama T. GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development. Plant Cell. 2015;27(10):2894–2906. doi:10.1105/tpc.15.00607.
  • Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L. An ancient mechanism controls the development of cells with a rooting function in land plants. Science. 2007;316(5803):1477–1480. doi:10.1126/science.1142618.
  • Yi K, Menand B, Bell E, Dolan L. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet. 2010;42(3):264–267. doi:10.1038/ng.529.
  • Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme K. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001;20(11):2779–2788. doi:10.1093/emboj/20.11.2779.
  • Jones MA, Shen -J-J, Fu Y, Li H, Yang Z, Grierson CS. The Arabidopsis ROP2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell. 2002;14(4):763–776. doi:10.1105/tpc.010359.
  • Gendre D, Baral A, Dang X, Esnay N, Boutté Y, Stanislas T, Vain T, Claverol S, Gustavsson A, Lin D, et al. Rho-of-plant activated root hair formation requires Arabidopsis YIP4a/b gene function. Development. 2019;146(5):dev168559. doi:10.1242/dev.168559.
  • Li C, Yeh F-L, Cheung AY, Duan Q, Kita D, Liu M-C, Maman J, Luu EJ, Wu BW, Gates L. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife. 2015;4:e06587. doi:10.7554/eLife.06587.
  • Liao H, Tang R, Zhang X, Luan S, Yu F. FERONIA receptor kinase at the crossroads of hormone signaling and stress responses. Plant Cell Physiol. 2017;58(7):1143–1150. https://doi.org/10.1093/pcp/pcx048.
  • Franck CM, Westermann J, Boisson-Dernier A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol. 2018;69:301–328. doi:10.1146/annurev-arplant-042817-040557.
  • Li C, Wu H-M, Cheung AY. FERONIA and her pals: functions and mechanisms. Plant Physiol. 2016;171(4):2379–2392. doi:10.1104/pp.16.00667.
  • Zhu S, Martínez Pacheco J, Estevez JM, Yu F. Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. New Phytol. 2020;227(1):45–49. doi:10.1111/nph.16497.
  • Zhu S, Estévez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu XM, Pacheco JM, et al. The RALF1–FERONIA complex phosphorylates eIF4E1 to promote protein synthesis and polar root hair growth. Mol Plant. 2020;13(5):698–716. doi:10.1016/j.molp.2019.12.014.
  • Akkerman M, Franssen‐verheijen M, Immerzeel P, Hollander L, Schel J, Emons AMC. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana. Medicago Truncatula Vicia Sativa J Microsc. 2012;247(1):60–67. doi:10.1111/j.1365-2818.2012.03611.x.
  • Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Clancia M, et al. O-glycosylated cell wall proteins are essential in root hair growth. Science. 2011;332(6036):1401–1403. doi:10.1126/science.1206657.
  • Nielsen E. Plant cell wall biogenesis during tip growth in root hair cells. : Springer, Berlin; 2008. doi:10.1007/978-3-540-79405-9_11.
  • Hocq L, Pelloux J, Lefebvre V. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci. 2017;22(1):20–29. doi:10.1016/j.tplants.2016.10.009.
  • Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–19. doi:10.1016/j.tplants.2016.08.002.
  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA. 2007;104(52):20996–21001. doi:10.1073/pnas.0708586104.
  • Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004;9(11):534–540. doi:10.1016/j.tplants.2004.09.002.
  • Dunand C, Crèvecoeur M, Penel C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 2007;174(2):332–341. doi:10.1111/j.1469-8137.2007.01995.x.
  • Fry SC. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J. 1998;332(2):507–515. doi:10.1042/bj3320507.
  • Schopfer P. Hydroxyl radical‐induced cell‐wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 2001;28(6):679–688. doi:10.1046/j.1365-313x.2001.01187.x.
  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature. 2005;438(7010):1013–1106. doi:10.1038/nature04198.
  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422(6930):442–446. doi:10.1038/nature01485.
  • Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. J Exp Bot. 2009;60(2):391–408. doi:10.1093/jxb/ern318.
  • Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta. 2012;1823(2):398–405. doi:10.1016/j.bbamcr.2011.09.011.
  • Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17(1):9–15. doi:10.1016/j.tplants.2011.10.001.
  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14(6):691–699. doi:10.1016/j.pbi.2011.07.014.
  • Schiefelbein JW, Somerville C. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell. 1990;2(3):235–243. doi:10.1105/tpc.2.3.235.
  • Wymer CL, Bibikova TN, Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J. 1997;12(2):427–439. doi:10.1046/j.1365-313X.1997.12020427.x.
  • Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, and Sato M, et al. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem. 2010;285(2):1435–1445. doi:10.1074/jbc.M109.058909.
  • Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol. 2005;8(4):397–403. doi:10.1016/j.pbi.2005.05.014.
  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 1998;14(3):365–370. doi:10.1046/j.1365-313X.1998.00136.x.
  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem. 2008;283(14):8885–8892. doi:10.1074/jbc.M708106200.
  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008;319(5867):1241–1244. doi:10.1126/science.1152505.
  • Nestler J, Liu S, Wen T-J, Paschold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, and Sakai H, et al. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J. 2014;79(5):729–740. doi:10.1111/tpj.12578.
  • Carol RJ, Dolan L. The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot. 2006;57(8):1829–1834. doi:10.1093/jxb/erj201.
  • Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS. Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell. 2000;12(10):1961–1974. doi:10.1105/tpc.12.10.1961.
  • Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell. 2005;17(2):525–536. doi:10.1105/tpc.104.028449.
  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C. Roles of cell wall peroxidases in plant development. Phytochemistry. 2015;112:15–21. doi:10.1016/j.phytochem.2014.07.020.
  • Plieth C, Vollbehr S. Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signal Behav. 2012;7(6):650–660. doi:10.4161/psb.20065.
  • Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C. Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta. 2006;223(5):965–974. doi:10.1007/s00425-005-0153-4.
  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A. Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta. 2002;214(6):821–828. doi:10.1007/s00425-001-0699-8.
  • Kwon T, Sparks JA, Nakashima J, Allen SN, Tang Y, Blancaflor EB. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Am J Bot. 2015;102(1):21–35. doi:10.3732/ajb.1400458.
  • Marzol E, Borassi C, Carignani Sardoy M, Ranocha P, Aptekmann AA, Bringas M, Pennington J, Paez-Valencia J, Peralta JM, Fleming M, et al. Class III peroxidases PRX01, PRX44, and PRX73 control root hair growth in Arabidopsis thaliana. Int J Mol Sci. 2022;23(10):5375. doi:10.3390/ijms23105375.
  • Bibikova TN, Zhigilei A, and Gilroy S. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta. 1997;203(4):495–505. doi:10.1007/s004250050219.
  • Ketelaar T. The actin cytoskeleton in root hairs: all is fine at the tip. Curr Opin Plant Biol. 2013;16(6):749–756. doi:10.1016/j.pbi.2013.10.003.
  • Sanders D, Pelloux J, Brownlee C, Harper JF. Calcium at the crossroads of signaling. Plant Cell. 2002;14:S401–S417. doi:10.1105/tpc.002899.
  • Carroll AD, Moyen C, Van Kesteren P, Tooke F, Battey NH, Brownlee C. Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell. 1998;10(8):1267–1276. doi:10.1105/tpc.10.8.1267.
  • Cramer GR, Jones RL. Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana. Plant Cell Environ. 1996;19(11):1291–1298. doi:10.1111/j.1365-3040.1996.tb00007.
  • Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–1058. doi:10.1016/j.cell.2007.11.028.
  • Zhang S, Pan Y, Tian W, Dong M, Zhu H, Luan S, Li L. Arabidopsis CNGC14 mediates calcium influx required for tip growth in root hairs. Mol Plant. 2017;10(7):1004–1006. doi:10.1016/j.molp.2017.02.007.
  • Zeb Q, Wang X, Hou C, Zhang X, Dong M, Zhang S, Zhang Q, Ren ZJ, Tian W, Zhu HF, et al. The interaction of CaM7 and CNGC14 regulates root hair growth in Arabidopsis. J Integr Plant Biol. 2020;62(7):887–896. doi:10.1111/jipb.12890.
  • Brost C, Studtrucker T, Reimann R, Denninger P, Czekalla J, Krebs M, Fabry B, Schumacher K, Grossmann G, Dietrich P. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. Plant J. 2019;99(5):910–923. doi:10.1111/tpj.14371.
  • Tan Y-Q, Yang Y, Zhang A, Fei C-F, L-L G, Sun S-J, Xu W, Wang LL, Liu HT, Wang YF. Three CNGC family members, CNGC5, CNGC6, and CNGC9, are required for constitutive growth of Arabidopsis root hairs as Ca2+-permeable channels. Plant Commun. 2020;1(1):100001. doi:10.1016/j.xplc.2019.100001.
  • Maciver SK, Hussey PJ. The ADF/cofilin family: actin-remodeling proteins. Genome Biol. 2002;3(5):reviews3007. doi:10.1186/gb-2002-3-5-reviews3007.
  • Monshausen GB, Messerli MA, Gilroy S. Imaging of the yellow cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol. 2008;147(4):1690–1698. doi:10.1104/pp.108.123638.
  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mitter R. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 2014;19(10):623–630. doi:10.1016/j.tplants.2014.06.013.
  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant. 2013;6(2):559–569. doi:10.1093/mp/sst009.
  • Jones MA, Raymond MJ, Yang Z, Smirnoff N. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot. 2007;58(6):1261–1270. doi:10.1093/jxb/erl279.
  • Miedema H, Demidchik V, Véry -A-A, Bothwell JHF, Brownlee C, Davies JM. Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol. 2008;179(2):378–385. doi:10.1111/j.1469-8137.2008.02465.x.
  • Cosgrove DJ. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta. 1989;177(1):121–130. doi:10.1007/BF00392162.
  • McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992;4(11):1425–1433. doi:10.1105/tpc.4.11.1425.
  • Rayle DL, Cleland R. Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 1970;46(2):250–253. doi:10.1104/pp.46.2.250.
  • Eklöf JM, Brumer H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 2010;153(2):456–466. doi:10.1104/pp.110.156844.
  • Rayle DL, Cleland RE. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 1992;99(4):1271–1274. doi:10.1104/pp.99.4.1271.
  • Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321–326. doi:10.1038/35030000.
  • Altartouri B, Geitmann A. Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. Curr Opin Plant Biol. 2014 11;2015(23):76–82. doi:10.1016/j.pbi.
  • Hoffmann RD, Olsen LI, Ezike CV, Pedersen JT, Manstretta R, López-Marqués RL, and Palmgren M. Roles of plasma membrane proton ATPases AHA2 and AHA7 in normal growth of roots and root hairs in Arabidopsis thaliana. Physiol Plant. 2019; 166(3): 848–861. doi:10.1111/ppl.12842
  • Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science. 2014;343(6169):408–411. doi:10.1126/science.1244454.
  • Mangano S, Martínez Pacheco J, Marino-Buslje C, Estevez JM. How does pH fit in with oscillating polar growth? Trends Plant Sci. 2018;23(6):479–489. doi:10.1016/j.tplants.2018.02.008.
  • Feijó JA. The pollen tube oscillator: towards a molecular mechanism of tip growth? Fertilization in higher plants. : Springer, Berlin; 1999. 317–336. doi:10.1007/978-3-642-59969-9_22.